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Abstract

This paper studies how a borrower issues long- and short-term debt in response to shocks to the
enterprise value. Our theory highlights the tradeoff between commitment and hedging. Short-
term debt protects creditors from future dilution and incentivizes the borrower to reduce leverage
after negative shocks. Long-term debt postpones default and allows the borrower time to recover
after large negative shocks, thereby providing hedging. When borrowers are in distress, they
rely on short-term debt; however, they issue both types of debt during more normal periods.
Our model generates novel implications for the dynamic adjustment of debt maturities.
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1 Introduction

The optimal management of debt obligations is a central problem faced by indebted entities,
including households, firms, and sovereign governments. In practice, debt can differ in several
aspects; an important one is its maturity. Borrowing can be short, as in the case of trade credit,
or long, as in the case of 30-year corporate bonds. How do borrowers choose the maturity profile
of their outstanding debt? How do they adjust the mix between long- and short-term borrowing
following shocks to their enterprise value?

The academic literature falls behind in providing a useful framework to study these questions
despite their obvious importance. For example, the Leland model (Leland, 1994) and the vast
follow-up literature typically assume that (1) all debt has the same (expected) maturity and (2)
the borrower either commits to the total leverage or may only increase leverage after retiring all
existing debt and paying some exogenous issuance cost.1 Although these assumptions simplify the
analysis, they are inconsistent with the ample empirical evidence that borrowers often issue a mix
of long- and short-term debt simultaneously and that adjusting the outstanding debt’s maturity
profile can take some time to accomplish.

This paper introduces a simple and tractable framework to address these questions. Our model
features two types of debt, short- and long-term. The central tension comes from the tradeoff
between commitment and hedging. A borrower without commitment to future issuance will always
dilute existing long-term debt. By contrast, she cannot dilute short-term debt because it matures
before the borrower can borrow again. Meanwhile, long-term debt provides important hedging
benefits: following a large negative shock, long-term debt shares the losses to the firm value with
equity holders, potentially avoiding an immediate default. The cost of bankruptcy implies that even
a risk-neutral borrower can benefit from hedging through delaying bankruptcy, creating demand for
long-term debt. The optimal mix of long-term and short-term debt balances dilution costs versus
the hedging benefits.

More specifically, a risk-neutral borrower has assets that generate an income flow that follows a
geometric Brownian motion (GBM) whose drift switches between two different regimes representing
the upturn and downturn. The expected growth rate of the income is high in an upturn but low in
a downturn. A transition from the upturn to the downturn is a large negative shock, interpreted as
the downside risk. Creditors are competitive, risk-neutral, and more patient than the borrower. The
difference in patience motivates the borrower to issue debt. Two types of debt are available. The
short-term debt matures instantaneously (i.e., has zero maturity) and needs to be continuously
rolled over. Long-term debt matures exponentially with a constant amortization rate. The key

1Notable exceptions include He and Milbradt (2016) and DeMarzo and He (2021), which we discuss later.
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innovation of our model is to allow the borrower to have full flexibility in issuing both types of debt
at any time to adjust the maturity profile of the outstanding debt.

Our paper shares with the existing literature (Fama and Miller, 1972; Black and Scholes, 1973;
Admati et al., 2018) that an uncommitted borrower with outstanding long-term debt is always
tempted to issue more debt to dilute long-term creditors. Should the borrower be solely financed
by long-term debt, she would never reduce leverage after negative shocks, even if such a reduction
could enhance the firm value. In equilibrium, creditors anticipate future dilution, and long-term
debt prices adjust downwards to the level where the borrower cannot capture any benefit (DeMarzo
and He, 2021). By contrast, short-term debt matures before the borrower can issue debt again and
therefore does not suffer from dilution. Following negative shocks, short-term debt incentivizes the
borrower to reduce the leverage, even though she has not committed to doing so. This happens
because short-term debt constantly resets, so the borrower reaps all the benefits from delevering,
whereas in the case of long-term debt, the delevering benefits are shared with existing long-term
creditors.

Given the advantage of short-term debt in resolving the commitment problem, it is natural for
the borrower to issue it. Indeed, our results show that in the downturn, the borrower costlessly
commits not to issue long-term debt by issuing a large amount of short-term debt to exhaust her
borrowing capacity. In the upturn, this commitment via short-term debt is no longer costless. The
potential arrival of the downturn introduces an interesting tradeoff in issuing short-term debt. On
the one hand, the borrower can issue the amount of short-term debt that exhausts her borrowing
capacity to capture the benefits of debt issuance fully. Then, short-term debt is risky because
it leads to an immediate default and the loss of enterprise value if a downturn arrives. On the
other hand, the borrower can issue a safe level of short-term debt, which preserves some borrowing
capacity and avoids default even if the state switches to the downturn. However, the borrower
can no longer capture the benefits of debt issuance fully. We show that when a borrower has
a large amount of long-term debt outstanding, she opts for risky short-term debt. However, if
the outstanding long-term debt is low, she chooses safe short-term debt. The reason is that the
incremental increase in default probability represents the marginal cost of issuing short-term debt.
When there is a large amount of outstanding long-term debt, this marginal cost is low, and vice
versa.

The issuance of long-term debt in the upturn is directly related to the choice of short-term debt.
When the borrower optimally issues the risky level of short-term debt, long-term debt is exposed to
the same downside risk as short-term debt. In this case, long-term debt offers no hedging benefit but
additionally suffers from dilution, so the borrower has no reason to issue it. By contrast, when the
borrower optimally issues the safe level of short-term debt, she can benefit from issuing long-term
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debt. Intuitively, the arrival of the downturn generates a loss in the firm’s enterprise value, which
is shared only between the borrower and long-term creditors; short-term creditors’ claims must
be left intact unless the borrower defaults. Therefore, by sharing losses from the regime switch,
long-term debt provides hedging benefits to the borrower before the downturn arrives. Note that
the borrower values the benefit of long-term debt in hedging the downside risk, even though she is
risk-neutral. The reason is that the cost of bankruptcy generates hedging benefits, as acknowledged
by the previous literature (Smith and Stulz, 1985).

Our paper generates some novel predictions on the dynamics of debt issuance. Specifically, a
target ratio of long-term debt to cash flow exists. As the firm adjusts long-term debt toward the
target ratio, the issuance of short-term debt can be quite volatile and crucially depends on the level
of outstanding long-term debt.

By constructing a dynamic model, our model emphasizes that empirical studies of debt maturity
should differentiate stock (outstanding debt) versus flow (newly issued debt). For example, our
results in the upturn imply that in states where the borrower has a lot of outstanding long-term
debt and is, therefore, very close to the default boundary, the newly issued debt is exclusively
short-term. Almeida et al. (2011) present findings during the financial crisis that if a large amount
of existing long-term debt is due very soon, this can push the borrower close to default and reduce
real activities. Brunnermeier (2009) and Krishnamurthy (2010) also document that during the
crisis when a borrower is close to default, the newly-issued debt was primarily short-term.

Moreover, our model implies that defaults can be classified into two types. First, they can be
driven by the gradual deterioration of the borrower’s cash flows relative to the accumulation of long-
term debt. Second, defaults can occur suddenly after a large negative shock and an excessive amount
of short-term debt borrowed before the shock. Furthermore, our model implies that borrowers
more exposed to large downside risks cross-sectionally should use more long-term debt in their
capital structure. Our model is consistent with the evidence that market leverage is counter-
cyclical (Halling et al., 2016), whereas debt maturity structure is pro-cyclical (Mian and Santos,
2018; Chen et al., 2021).

Our paper builds on the literature of dynamic corporate finance pioneered by Leland (1994).
Most of this literature either fixes book leverage (Leland, 1998) or allows for adjustment with some
issuance costs (Goldstein et al., 2001; Dangl and Zechner, 2020; Benzoni et al., 2019). Important
exceptions are DeMarzo and He (2021) and Abel (2018). Whereas the former studies leverage
dynamics when the borrower has full flexibility in issuing exponentially-maturing debt, the latter
addresses the related problem when the borrower can only issue zero-maturity debt (see also Bolton
et al. (2021), who further model costly equity issuance). In these papers, the borrower can only
issue one type of debt, so the tradeoff between borrowing long and short is not explicitly studied.
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He and Milbradt (2016) also study the problem of dynamic debt maturity management, where the
total leverage is fixed, and the borrower can choose between two types of exponentially maturing
debt. Our paper differs in two aspects. First, we allow for flexibility in adjusting total leverage.
Second, we model short-term debt as debt that matures instantaneously. The different approaches
in modeling short-term debt render the mechanisms of the two papers drastically different. Whereas
we emphasize the tradeoff between commitment and hedging, their paper focuses on rollover losses
and dilution. Malenko and Tsoy (2020) study the role of reputation and predict interior optimal
debt maturity. Brunnermeier and Yogo (2009) also study debt maturity in the context of liquidity
risk, and they show long-term debt is optimal if the firm is close to default (or close to debt
restructuring as in their paper). Our results are the opposite: the borrower will issue exclusively
short if she is close to default.

The insight that long-term debt can be diluted has been recognized by Fama and Miller (1972)
and Black and Scholes (1973). More recently, Admati et al. (2018) formalized this argument and
showed that the borrower financed by long-term debt never voluntarily reduces leverage even after
negative shocks to the fundamentals. Brunnermeier and Oehmke (2013) show equity and short-term
debt can dilute long-term debt’s recovery value in bankruptcy. Our paper rules out this mechanism
by assuming zero recovery value in the benchmark model. Instead, we focus on dilution outside
the bankruptcy, which comes exclusively from the borrower’s lack of commitment to issuance and
default.

More broadly, our paper is related to the literature in corporate finance on debt maturity, start-
ing from Flannery (1986) and Diamond (1991). This literature emphasizes the role of asymmetric
information and the signaling role of short-term debt. One advantage of a fully-dynamic setup is
that it allows us to make empirical predictions regarding the stock (existing debt) and the flow
(new issuance) of debt maturity. The insight that short-term debt resolves the lack of commitment
is also present in another related literature (Calomiris and Kahn, 1991; Diamond and Rajan, 2001)
that emphasizes the runnable feature of short-term debt. As DeMarzo (2019) shows, the borrower’s
problem when she only issues long-term debt is related to the Coase conjecture on the durable-goods
monopoly (Coase, 1972). In our context, the borrower is the monopolist, and long-term debt is the
durable goods. Short-term debt resembles the leasing solution (Bulow, 1982) to the durable-goods
monopoly problem. Relatedly, Gertner and Scharfstein (1991) show that conditional on financial
distress, short-term debt has a higher market leverage for the same face value than long-term debt
and therefore leads to more ex-post debt overhang (also see Diamond and He (2014)).

The hedging benefits of long-term debt are also related to the literature on fiscal policy and
sovereign debt. For example, Angeletos (2002) shows that the ex-post variations in the market
value of public debt hedge the government against bad fiscal conditions. Buera and Nicolini (2004)
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shows that state-contingent debt can be synthetically constructed by a rich maturity structure of
non-contingent debt (also see Gale (1990)). Aguiar et al. (2019) show that without hedging motives,
the borrower never actively issues any long-term debt due to the lack of commitment. By contrast,
we show that with hedging, the borrower issues a combination of long- and short-term debt. Niepelt
(2014) studies a related question but default decisions on different maturities can be independent.
Bigio et al. (2021) study debt maturity management under liquidity cost but without dilution. In
their model, the borrower’s choice depends on the bond demand curve, micro-founded via search
(Duffie et al., 2005). The mechanisms of the two papers are complementary. More generally, the
mechanism that maturity implements contingencies have been discussed in classic literature such
as Diamond and Dybvig (1983) and Allen and Gale (1998).

The literature on risk management highlights that due to the cost of bankruptcy, even a risk-
neutral borrower can benefit from hedging, (Smith and Stulz, 1985; Bolton et al., 2011; Froot et al.,
1993; Rampini and Viswanathan, 2010; Panageas, 2010). To our knowledge, no previous work has
established the link between maturity management and risk management in a corporate finance
setting.

2 The Model

2.1 Agents and the Asset

Time is continuous and goes to infinity: t ∈ [0,∞). We study a borrower, often interpreted as
a firm. The relevant parties include the borrower as an equity holder and competitive creditors.
Throughout the paper, we assume all agents are risk-neutral, deep-pocketed, and protected by
limited liability. Moreover, the borrower discounts the future at a rate ρ, which exceeds r, the
discount rate of creditors.

The borrower’s asset generates earnings at a rate Xt, which evolves according to:

dXt

Xt−
= µθtdt+ σdBt − 1{θt=L}dNt, (1)

where Bt is a standard Brownian motion, Nt is a Poisson process with arrival rate η, and θt ∈ {H,L}
represents the regime with θ0 = H. At a random time τλ, which arrives with intensity λ, the regime
switches to L and stays unchanged. The drift µθt differs across the two regimes with µL < µH ,
so that the high state H is associated with a higher expected growth rate in the borrower’s cash
flow. Below, we refer to the high state as the upturn, the low state as the downturn, and the regime
switch as the downside risk. In addition, a disaster shock hits in the downturn at a random time
τη that arrives at a Poisson intensity η, upon which the cash flow Xt permanently drops to zero.
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This disaster shock does not play a significant role if we consider a borrower that starts with an
outstanding amount of long-term debt. However, we introduce it so an initially unlevered borrower
has incentives to issue long-term debt (see section 3.3 for details). Under some conditions, the
model with the disaster is similar to one with more than two regimes.2

2.2 Debt Maturity Structure

The difference between the discount rates ρ− r offers benefits for the borrower to issue debt.3

Throughout the paper, we allow the borrower to issue two types of debt, short and long, to adjust
the outstanding debt maturity structure. In particular, we do not restrict the borrower to commit
to a particular issuance path but instead let the issuance decisions be made at each instant.

All short-term debt matures instantaneously and, therefore, needs to be continuously rolled over.
The fact that short-term debt matures instantaneously implies that the borrower does not have the
chance to issue new debt before the existing short-term debt matures. We model short-term debt
as one with zero maturity. Let Dt− = limdt↓0Dt−dt be the amount of short-term debt outstanding
(and due) at time t and let yt− be the associated short rate. Long-term debt matures in a staggered
manner. We follow the literature and model long-term debt as exponentially maturing bonds with
coupon rate r and a constant amortization rate ξ > 0. Therefore, 1/ξ can be interpreted as the
expected maturity. Let Ft be the aggregate face value of long-term debt outstanding at time t.

The borrower may default, in which case the bankruptcy is triggered. To isolate issues related
to debt seniority and direct dilution in bankruptcy, we assume the bankruptcy cost is 100%. In
other words, creditors cannot recover any value once the borrower defaults.

2.3 Valuation

Let τb be the endogenous time the borrower chooses to default. We define pt as the price per
unit of the face value. The break-even condition implies that for t < τb,

pt = Et
[∫ τξ∧τb

t
e−r(s−t)rds+ e−r(τξ−t)1{τb>τξ}

]
, (2)

where τξ is long-term debt’s (stochastic) maturing date. The two components in the expression
correspond to the coupon and final payments. The short rate yt− depends on the borrower’s

2See Internet Appendix B.6 for details.
3The difference can be related to liquidity differences, contracting costs, or market segmentation. An alternative

setup is to introduce tax shields, and the results are similar.
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equilibrium default decisions, and the break-even condition suggests:

yt− = r + lim
dt↓0

Prt−dt (τb ≤ t|τb > t− dt)

dt
, (3)

where the second term on the right-hand side is the risk premium compensating creditors for the
hazard rate of default. According to (3), yt− compensates the creditors for the probability of default
occurring between t− dt and t. For example, if in the upturn, short-term creditors expect default
only upon a transition to the downturn, then yt− = r+λ. Similarly, if in the downturn, short-term
debt only defaults when the disaster shock hits, then yt− = r + η.

Over a short time interval [t, t+ dt), the net cash flow to the borrower is[
Xt − (r + ξ)Ft − yt−Dt−

]
dt+ ptdGt + dDt, (4)

where (r + ξ)Ft is the interest and principal payments to long-term creditors, yt−Dt− the interest
payments to short-term creditors. The remaining two terms, ptdGt and dDt are the proceeds from
issuing long- and short-term debt.4

Define Vt as the continuation value of the borrower, which we sometimes refer to as the equity
value at time t. The borrower chooses the endogenous time of default as well as the issuance of two
types of debt to maximize the equity value, taking the price of long-term debt and the short-rate
function as given. Once again, let us emphasize that all these decisions, default and issuance, are
made without commitment.

Vt = sup
τb,{Gs,Ds:s≥t}

Et
[ ∫ τb

t
e−ρ(s−t) {[Xs − (r + ξ)Fs − ys−Ds−] ds+ psdGs + dDs}

]
. (5)

To guarantee the valuations remain finite, we follow the literature and assume both r + λ > µH

and r + η > µL hold.

2.4 Smooth Equilibrium

We focus on the Markov perfect equilibrium (MPE) in which the payoff-relevant state vari-
ables include the exogenous state θt, the cash-flow level Xt, and the amount of outstanding debt
{Dt−, Ft}. The equilibrium requires the following. First, creditors break even; that is, pt follows
equation (2) and yt− follows equation (3). Second, the borrower chooses optimal default and is-
suance (i.e., equation (5)), subject to the limited liability constraint Vt ≥ 0. Finally, an MPE is
smooth if no jump occurs in long-term debt issuance, in which case we write dGt = gtFtdt. In a

4One can think of dDt as the net issuance of short-term debt. Specifically, dDt = Dt −Dt− if there is a jump at t.
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smooth equilibrium, the aggregate face value of long-term debt evolves according to

dFt = (gt − ξ)Ftdt. (6)

Let us define Jt as the joint (maximized) continuation value of the borrower and short-term
creditors if default does not occur at time t. The following result motivates us to work with Jt for
the remainder of this paper.

Proposition 1. The equity value is Vθt(Xt, Ft, Dt−) = max {Jθt(Xt, Ft)−Dt−, 0}, where the joint
continuation value Jt is given by the value function Jθt(Xt, Ft) of the following problem:

JH(Xt, Ft) = sup
τb,gs,Ds

Et

[∫ τb

t
e−(ρ+λ)(s−t)

{
Xs − (r + ξ)Fs + psgsFs

+ (ρ+ λ− ys−)Ds− + λmax {JL(Xs, Fs)−Ds−, 0}
}
ds

]
(7)

JL(Xt, Ft) = sup
τb,gs,Ds

Et

[∫ τb

t
e−(ρ+η)(s−t)

{
Xs − (r + ξ)Fs + psgsFs + (ρ+ η − ys−)Ds−

}
ds

]
,

where the maximization is subject to the limited liability constraint Ds− ≤ Jθs−(Xs, Fs).

The terms in (7) are related to those in (5). Here, (ρ + λ − ys)Ds− reflects the gains from
issuing short-term debt. The last term in (7) stands for the event of regime-shifting, upon which the
borrower would rather default and renege on the payments if the amount of outstanding short-term
debt exceeds the maximum joint value without an immediate default; that is if Ds− > JL(Xs, Fs).
The terms in JL(X,F ) can be interpreted similarly.

Proposition 1 generates an interesting economic insight: even though the borrower makes de-
cisions on debt issuance, these decisions are made to maximize the joint value of the borrower
and short-term debt. This is because any issuance decisions will be immediately reflected in the
credit risk faced by short-term creditors, affecting the price of short-term debt and the proceeds
from issuing it. Note that the payoff to existing long-term creditors is ignored in the maximiza-
tion problem because their debts have been issued in the past, and the borrower ignores how new
debt issuance affects their valuation.5 This result relates to Aguiar et al. (2019) in the context of
sovereign debt, where the equilibrium issuance decisions can be characterized by the solution to
a planner’s problem that ignores the payoff to existing long-term creditors. Meanwhile, the max
operator in (7) shows that the borrower and short-term creditors still have conflicts on whether to
default immediately.

5The payoff to new long-term creditors is at dt order in the smooth equilibrium.
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Proposition 1 implies that the state variable Dt− only enters the problem by affecting whether
the borrower defaults immediately at time t. Following this result, we can suppress the problem’s
dependence on Dt− and treat it as a decision variable. A smooth MPE is characterized by func-
tions Jθ (X,F ), pθ (X,F ), yθ (X,F,D), Dθ (X,F ), and gθ (X,F ). By exploiting the homogeneity
of the problem, we can further reduce the problem’s dimension and write Jθ (X,F ) = Xjθ (f),
Dθ (X,F ) = Xdθ (f), where f = F/X. The functions gθ, pθ, and yθ are homogeneous of degree
zero, so we can write them as gθ(f), pθ(f), and yθ(f, d). For simplicity, we refer to Jθ(X,F ) and
jθ(f) as the unscaled and scaled value function for the rest of this paper.

3 Equilibrium

We solve the model in several steps. Subsection 3.1 studies the model in which the borrower is
only allowed to issue short-term debt. This exercise highlights the benefits and costs of short-term
debt. Subsection 3.2 builds upon 3.1 but further allows the borrower a one-time opportunity to
issue long-term debt at t = 0. This exercise serves two purposes. First, it illustrates the tradeoff of
long-term debt even without commitment issues. Second, the value functions in this exercise turn
out identical to the ones in which the borrower has full flexibility in issuing both types of debt.
With results from subsection 3.1 and 3.2, we proceed to solve the model in subsection 3.3 in which
the borrower can flexibly issue both types of debt. Subsection 3.4 conducts comparative statics
and derives the implied dynamic debt maturity patterns.

3.1 Equilibrium with Only Short-Term Debt

Let us first explore the model where the borrower can only issue short-term debt, which relates
to Abel (2018). Heuristically, short-term debt is repaid after each “dt” so that the borrower always
renews with zero leverage. The dilution problem therefore no longer exists. The choice of short-
term debt follows the standard trade-off theory whereby the equity holder balances cheap debt
against costly bankruptcy. Given there is no long-term debt, we work with the unscaled value
function, denoted as Jsθ (Xt), which is also the enterprise value. We also use Ds

θ(Xt) and ysθ(Xt) for
the value and rates of short-term debt.

Note that short-term debt is immune to Brownian shocks and may only default after jump
shocks, including regime shifts and disaster shocks. In the low state, default occurs following the
disaster, which does not depend on the leverage level. Therefore, the borrower can exhaust her
borrowing capacity by fully levering up. In this case, the borrower effectively “sells” the entire firm
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to creditors whose discount rate is r. The enterprise value becomes

JsL(Xt) = Et
[∫ ∞

t
e−(r+η)(s−t)Xsds

]
⇒ JsL(Xt) =

Xt

r + η − µL
. (8)

In the high state, the issuance decision involves a more interesting tradeoff. Default does not occur
if Jst ≥ Ds

t−; hence, given the potential of a regime switch, the safe level of short-term debt cannot
exceed JsL(Xt). Meanwhile, the borrower can also exhaust her borrowing capacity by issuing short-
term debt JsH(Xt), but this becomes risky. The borrower prefers risky short debt JsH(Xt) if the
benefits from higher leverage exceed the additional bankruptcy cost due to the regime switch, i.e.,

(ρ− r) (JsH(Xt)− JsL(Xt))︸ ︷︷ ︸
benefit from higher leverage

> λJsL(Xt)︸ ︷︷ ︸
additional bankruptcy cost

. (9)

Similar to (8), the associated high-state enterprise value when the borrower chooses JsH(Xt) is
Xt

r+λ−µH . If the borrower chooses riskless short-term debt JsL(Xt), the enterprise value becomes

Et

∫ ∞

t
e−(ρ+λ)(s−t)

{
Xs + (ρ− r)JsL(Xs)︸ ︷︷ ︸

leverage benefits

+ λJsL(Xs)︸ ︷︷ ︸
enterprise value in L

}
ds

 =
Xt

ρ+ λ− µH

(
1 +

ρ+ λ− r

r + η − µL

)
.

Proposition 1 implies without long-term debt, the borrower chooses short-term debt to maximize
the enterprise value. We have the following results.

Proposition 2 (Equilibrium with only short-term debt). If only short-term debt is allowed, the
unique equilibrium is the following.

1. In the low state L, the value function and short-term debt issuance are

Ds
L(Xt) = JsL(Xt) =

Xt

r + η − µL
.

The borrower only defaults upon the disaster shock, so the short rate is ysL(Xt) = r + η.

2. In the high state H, the value function is

JsH(Xt) = max

{
Xt

r + λ− µH
,

Xt

ρ+ λ− µH

(
1 +

ρ+ λ− r

r + η − µL

)}
.

Let

λ̄ ≡

√(
ρ− µH

2

)2

+ (ρ− r)(µH + η − µL)−
(
ρ− µH

2

)
. (10)
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• If λ ≤ λ̄, short-term debt is
Ds
H(Xt) =

Xt

r + λ− µH

The borrower defaults upon the regime switch, and the short rate is ysH(Xt) = r + λ.

• If λ > λ̄,
Ds
H(Xt) =

Xt

r + η − µL
.

The borrower does not default upon the regime switch, and the short rate is ysH(Xt) = r.

3.2 Equilibrium with One-Time Long-Term Debt Issuance

Next, we build upon the model in subsection 3.1 and allow the borrower to issue long-term debt
once at t = 0. In other words, the borrower can commit to not issuing any long-term debt after
t = 0. We solve this model backward.

Short-Term Debt and Value Function After t = 0

Let F0 be the level of long-term debt issued at t = 0. Without any new issuance, the outstanding
long-term debt evolves according to

dFt = −ξFtdt.

Now that there is outstanding long-term debt, we will work with the scaled value function after
t = 0, denoted as j0θ (f), where the superscript 0 highlights that we are imposing gθ(f) = 0 after
t = 0. By considering the change in the value function in Proposition 1 over a small interval and
substituting J0

θ (X,F ) = Xj0θ (f), we get the following Hamilton-Jacobi-Bellman (HJB) equation:

(ρ+ η − µL) j
0
L (f) = max

d0L∈[0,j
0
L(f)]

1− (r + ξ) f+
(
ρ+ η − y0L

)
d0L− (µL+ξ)fj

0′
L (f)+

1

2
σ2j0

′′
L (f) (11)

Results on the short-term debt are similar to those in Proposition 2. With outstanding long-
term debt, the borrower endogenously defaults when the fundamental Xt deteriorates sufficiently
compared to the outstanding long-term debt Ft, or equivalently the ratio of long-term debt to
earnings ft = Ft

Xt
hits an endogenous boundary f bL, where f bL satisfies the value matching condition

j0L(f
b
L) = 0 and the smooth pasting condition j0

′
L (f

b
L) = 0.
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Following a similar analysis, we arrive at the HJB for the scaled value function j0H(f):

(ρ+ λ− µH) j
0
H(f) = max

d0H∈[0,j0H(f)]
1− (r + ξ) f +

(
ρ+ λ− y0H

)
d0H + λmax

{
j0L(f)− d0H , 0

}
− (µH + ξ)fj0

′
H(f) +

1

2
σ2f2j0

′′
H (f). (12)

As usual, the value function satisfies the value matching and smooth pasting conditions j0H(f bH) = 0

and j0
′
H(f

b
H) = 0 at the default boundary f = f bH .

In the upturn, the choice of short-term debt entails a tradeoff similar to that in Proposition 2.
The borrower chooses between the risky level j0H(f) and the safe level j0L(f). The former has the
benefits of higher leverage but carries the risk of default and a loss in enterprise value upon the
regime switch from H to L. Expecting so, short-term creditors demand a short rate

y0H
(
f, d0H

)
=

r if d0H ≤ j0L (f)

r + λ if d0H > j0L(f).
(13)

The condition determining the level of short-term debt is similar to (9), which becomes

(ρ− r)
(
j0H(f)− j0L(f)

)︸ ︷︷ ︸
benefit from higher leverage

≥ λj0L(f)︸ ︷︷ ︸
additional bankruptcy cost.

(14)

Note that a comparison between (14) and (9) shows that here, the choice of short-term debt depends
additionally on the level of outstanding long-term debt. In Lemma 2 of the appendix, we establish
the following single-crossing property. For λ > λ̄, the optimal issuance policy is characterized by a
threshold f† > 0, such that (14) holds for f ≥ f† but fails for f < f†. For λ ≤ λ̄, (14) holds for any
f > 0, in which case we define f† = 0 without loss of generality.

Figure 1 offers a graphical illustration to (14) under λ > λ̄. Note that the additional bankruptcy
cost λj0L(f) associated with risky short-term debt is high when f is low but low when f is high.
Eventually, it converges to zero as f approaches f bL. In contrast, the difference in borrowing benefits
declines much slower as f grows and only reaches zero at f bH .

Proposition 3 (Short-term debt Issuance). When the borrower has outstanding long-term debt
and can only issue short-term debt, the optimal short-term debt issuance is as follows:

• In state θ = L, the borrower issues short-term debt d0L(f) = j0L(f) and pays a short rate
y0L
(
f, d0L(f)

)
= r + η.
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Figure 1: Cost and benefit of riskless short-term debt

• In state θ = H, the borrower issues short-term debt

d0H (f) =

j0L(f) if f < f†

j0H(f) if f ≥ f†

and pays a short rate given by (13).

• If λ > λ̄, there exists a unique f† ∈ (0, f bL) such that (14) holds (fails) for f ≥ f† (f < f†). If
λ ≤ λ̄, (14) holds for any f ≥ 0.

The expressions for the value function j0θ (f) can be found in Proposition 12 in Internet Appendix
A.2.

Long-term Debt Issuance at t = 0

Now, we turn to the problem of initial issuance at t = 0. Let p0θ(f) be the price of long-term
debt. The borrower chooses the initial amount of short-term debt D0 and long-term debt F0 to
maximize the firm value, which includes equity and the proceeds from debt issuance. Given θ0 = H

and the homogeneity of the borrower’s problem, we can write this problem as

max
f0

j0H(f0) + p0H(f0)f0. (15)

The blue lines in Figure 2 plot (15) for λ ≤ λ̄ and λ > λ̄, respectively. The left panel shows that
when λ ≤ λ̄, the (scaled) firm value j0H(f0) + p0H(f0)f0 decreases with f , so it is never optimal to
issue any long-term debt. By contrast, the right panel shows when λ > λ̄, it is optimal for the
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Figure 2: Marginal benefits of long-term debt

The baseline parameters in this figure are as follows: ρ = 0.1, r = 0.05, µH = 0.01, µL = −0.1, ξ = 0.1, η = 1,
σ = 0.3, In panel (a) λ = 0.1 and in panel (b) λ = 0.4. We also plot jsH =

Js
H (Xt)

Xt
as a reference.

borrower to issue a positive amount of long-term debt. We formalize this observation.

Proposition 4 (Equilibrium with short-term debt and one-time long-term debt issuance). If the
borrower can only issue long-term debt once at t = 0, the optimal issuance is as follows.

• If λ ≤ λ̄,
j0H(f0) + p0H(f0)f0 <

JsH(Xt)

Xt
, ∀f0 > 0.

Therefore, the borrower does not issue any long-term debt at t = 0.

• If λ > λ̄, there exists a f∗0 > 0 such that

j0H(f
∗
0 ) + p0H(f

∗
0 )f

∗
0 >

JsH(Xt)

Xt
.

Therefore, the borrower optimally issues a positive amount of long-term debt f∗0 at t = 0.

Results in Proposition 4 are closely linked to those in Proposition 2. Proposition 2 shows that
when a downturn is not very likely (λ ≤ λ̄), it is optimal for the borrower to choose the risky
amount of short-term debt and use up her borrowing capacity. In this case, if there is a one-
time opportunity to issue long-term debt, Proposition 4 shows that the borrower will not issue it.
Matters are different when the downturn is more likely to arrive (λ > λ̄). According to Proposition
2, the borrower optimally chooses safe short-term debt and preserves some borrowing capacity. In
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this case, if there is a one-time opportunity to issue some long-term debt, Proposition 4 shows that
the borrower will have strict incentives to issue it.

As in the standard tradeoff theory of capital structure, we can express the firm value as the
unlevered value plus the benefits from issuing debt minus the expected cost of financial distress. In
our setting, this decomposition becomes

Firm Value = E0

[∫ ∞

0
e−ρtXtdt

]
︸ ︷︷ ︸

unlevered value

+E0

[∫ τb

0

(
e−ρt(ρ− r)Dt− +

(
e−rt − e−ρt

)
(r + ξ)Ft

)
dt

]
︸ ︷︷ ︸

benefit of debt

− E0

[∫ ∞

τb

e−ρtXtdt

]
︸ ︷︷ ︸

expected bankruptcy cost

.

Figure 2 plots these components (scaled by X0); the green line shows the gains from debt issuance,
while the red line describes the expected bankruptcy cost.6 If λ ≤ λ̄, adding long-term debt reduces
the benefit of debt while increasing the expected bankruptcy cost. As a result, the firm’s value is
reduced, so it is never beneficial to issue it. However, when λ > λ̄, adding some long-term debt can
increase the overall benefit of debt, as shown in the right panel. This is because long-term debt
increases the firm’s borrowing capacity. While it also increases the expected bankruptcy cost, this
effect is relatively small for small amounts of long-term debt. Therefore, starting from a situation
with no long-term debt (f = 0), the marginal benefit of issuing some long-term debt outweighs the
marginal cost. This means that issuing long-term debt can increase the value of the firm.

The Hedging Benefits of Long-term Debt

We have shown that the borrower never issues any long-term debt in a model without jump
risks. In such a model, short-term debt can immediately adjust following small and negative shocks
and completely avoid default. With downward jumps, adjustment in short-term debt is not always
possible, and the borrower may default. Long-term debt, however, will share losses from downward
jumps. Due to the ex-post (i.e., after the jump) loss-sharing benefits, the borrower wants to issue
it ex-ante (i.e., before the jump). Figure 3 illustrates the borrower’s balance sheet before and after
the transition. Note that a transition from the high to the low state reduces the (scaled) firm value
from j0H(f)+p

0
H(f) ·f to j0L(f)+p0L(f) ·f . Specifically, it reduces the equity value by j0H(f)−j0L(f)

and the long-term debt’s value by
(
p0H(f)− p0L(f)

)
· f , but leaves the value of short-term debt d

intact unless the borrower immediately defaults. In other words, short-term debt does not share
6For detailed calculations, please refer to Appendix B.
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State θ = H

LiabilitiesAssets

Cash flow
grows at µH

Equity: j0H − d

ST debt: d

LT debt: p0H · f

State θ = L

LiabilitiesAssets

Cash flow
grows at µL

Equity: j0L − d

ST debt: d

LT debt: p0L · f

Figure 3: Balance sheet upon the state transition without immediate default

any loss if default does not immediately occur after the state transition.

An Alternative Hedging Instrument

To further illustrate the role of long-term debt in hedging shocks to θt, we depart temporarily
by considering an alternative hedging instrument to the regime-shift shock. Specifically, let us
assume the borrower can buy a short-term derivative contract written on θt, which pays $1 if the
regime shifts from the upturn to the downturn. No arbitrage implies the premium on this derivative
contract must be λ. We have the following result.

Proposition 5. Under the derivative contract, the borrower never issues any long-term debt but
issues risky short-term debt dθ(0) = j0θ (0) for θ ∈ {H,L}. In addition, the borrower buys j0H(0)−
j0L(0) units of the derivative in the high state.

Proposition 5 shows that this derivative contract crowds out long-term debt. Compared to
the derivative contract, long-term debt is a more costly hedging instrument because of the cost
associated with potential bankruptcy. Note that here, the derivative provides a perfect hedge
against regime-shift shocks. The interpretation is that the regime-shift shock is an aggregate one.
In Internet Appendix B.1, we also explore the case where the hedge is imperfect so that the
regime-shift shock can be interpreted as an idiosyncratic one. Results show that when the hedging
provided by the derivative becomes less perfect, the borrower has more reasons to issue long-term
debt. Clearly, long-term debt and derivative contract are substitutes.

For the remainder of this paper, we will continue to explore the model without such a derivative
contract.
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3.3 Equilibrium with Continuous Long-Term Debt Issuance

Next, we proceed to solve the model in section 2 where the borrower has the flexibility to issue
both long- and short-term debt at all times. Our first result shows that the lack of commitment
to future issuance policies fully erodes the value of long-term debt. In equilibrium, the borrower’s
payoff is identical to the one in which she cannot issue any long-term debt. This result is analogous
to Coase (1972) conjecture and has a similar counterpart in DeMarzo and He (2021) (see Proposition
2 there).

Proposition 6. Suppose the borrower can flexibly issue long-term debt, and there is no commitment
to future debt issuance. In any smooth equilibrium, the joint valuation of equity and short-term
debt jθ(f) equals the one without new issuance of long-term debt. That is, jθ(f) = j0θ (f).

Proposition 6 implies that the evolution of jθ(f) is identical to that of j0θ (f) described by (11)
and (12), respectively. In equilibrium, long-term debt’s price must satisfy

pθ(X,F ) = −∂Jθ(X,F )
∂F

⇒ pθ(f) = −j′θ(f), (16)

where pθ (X,F ) captures the marginal proceeds from issuing an additional unit of long-term debt,
and ∂Jθ(X,F )

∂F is the associated drop in the continuation value. If the borrower finds it optimal
to adjust long-term debt smoothly, the marginal proceeds must be fully offset by the drop in
continuation value.7 Given so, in equilibrium, the borrower is indifferent and gains no marginal
benefit from adjusting long-term debt, so her equilibrium payoff is the same as if she were never to
issue any debt going forward.

Note that by definition j0θ (0) = jsθ := Jsθ (Xt)/Xt. Therefore, Proposition 6 immediately implies
jsθ = jθ(0), so that if the borrower has no outstanding long-term debt, the ability to flexibly issue it
does not affect the total firm value.8 Intuitively, whereas Proposition 4 shows that long-term debt
could have hedging benefits, these benefits are completely dissipated by the lack of commitment
to future issuance. The lack of commitment to future issuance means that long-term debt is not
valuable in equilibrium.

Even though the borrower is indifferent between issuing long-term debt and not, this result
7If the price were higher than the marginal cost, the borrower would benefit from accelerating any issuance,

bringing the price down immediately. Alternatively, if the price were lower than the marginal cost, the borrower
would benefit from accelerating any repurchase, bringing the price up.

8Formally, we can establish jθ(0) = max jθ(f) + pθ(f) · f . To see this, note that the first-order condition of the
right-hand side becomes j′θ(f)+p′θ(f) ·f+pθ(f) = p′θ(f) ·f , which is zero at either f = 0 or p′θ(f) = 0. The latter case
is ruled out because we prove in the appendix that p′θ(f) = −j′′θ (f) < 0 for f ∈ [0, fb

θ ]. The second-order condition
evaluated at f = 0 becomes p′θ(0) = −j′′θ (0) < 0, so that the objective function is concave at f = 0. Note that the
objective function differs from the one in subsection 3.2, which is j0θ (f) + p0θ(f) · f .
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does not imply she never borrows long on the equilibrium path. In fact, the equilibrium long-term
debt issuance policy needs to be consistent with the price of long-term debt.9 Let us now derive
the equilibrium issuance policies.

It follows from Itô’s lemma that, before the disaster dNt = 1 in the low state, ft evolves
according to10

dft =
(
gθt(ft)− ξ − µθt + σ2

)
ftdt− σftdBt. (17)

In the downturn θt = L, the price satisfies the following HJB equation:

(r + ξ + η) pL (f) = r + ξ︸ ︷︷ ︸
coupon and principal

+
(
gL(f)− ξ − µL + σ2

)
fp′L(f) +

1

2
σ2f2p′′L(f)︸ ︷︷ ︸

expected change in bond price

. (18)

To derive the issuance function gL, we plug dL = jL(f) into (11) (replace j0L(f) with jL(f)),
differentiate the resulting equation once, add (18) on both sides, and apply equation (16). Turning
to the upturn θt = H, the price pH(f) satisfies the following HJB equation:

(r + ξ + λ) pH(f) = r + ξ + 1{f<f†}λpL(f) +
(
gH(f)− ξ − µH + σ2

)
fp′H(f) +

1

2
σ2f2p′′H(f). (19)

Compared with (18), (19) includes the additional event of state transition, upon which the price
drops to pL (f) if f ≤ f†; otherwise, the borrower defaults and the price drops to zero. The
derivation of the issuance policy gH(f) follows the same steps as the one in the low state.

Proposition 7 (Long-term debt issuance). The equilibrium price of long-term debt is pθ (f) =

−j′θ (f) for θ ∈ {H,L} and f ∈ [0, f bθ ). The issuance policies are as follows.

1. Downturn θ = L: ∀f ∈ [0, f bL), the issuance policy is

gL(f) = 0.

2. Upturn θ = H:
9The reason is analogous to the logic behind mixed strategies: a player needs to be indifferent to her choice

of action, yet equilibrium strategies are uniquely determined to maintain that indifference. In our context, the
equilibrium long-term debt issuance needs to be consistent with the price of long-term debt.

10We omit the disaster shock dNt when θt = L. Upon the disaster shock dNt = 1, Xt gets absorbed at 0, so ft
jumps to ∞. The borrower then defaults immediately, and the price of the long-term debt jumps to zero.
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• For f ∈ [0, f†)

gH(f) =
(ρ− r) (pH(f)− pL(f))

−fp′H(f)
. (20)

• For f ∈ [f†, f
b
H)

gH(f) = 0.

• When λ ≤ λ̄, f† = 0 so gH(f) = 0 for all f ∈ [0, f bH).

According to Proposition 7, the borrower does not issue any long-term debt in the low state
and in the high state when f ≥ f†. By contrast, in the high state when f < f†, the borrower issues
long-term debt. The numerator in equation (20) captures the benefit of long-term debt coming
from the incremental borrowing capacity provided by long-term debt, whereas the denominator
captures the cost of issuance due to price impact. We can provide a heuristic derivation of the
equilibrium issuance policy based on a local perturbation approach that illustrates this cost-benefit
analysis.

Let’s consider the upturn state, θ = H, and an existing long-term debt level f = f0 ∈ [0, f†).
Suppose the borrower deviates for “one period” by issuing an extra amount of long-term debt ∆

at time t and buying it back at t + dt. The proceeds from additional long-term debt issuance is
pH(f0 +∆) ·∆. Meanwhile, this adjustment reduces the proceeds from issuing riskless short-term
debt by jL(f0)− jL(f0 +∆). Note that the difference in patience implies that each dollar proceeds
from total debt issuance results in a flow benefit of ρ− r. Combining the proceeds from long- and
short-term debt, the total marginal benefit from this adjustment is

(ρ− r)

pH(f0 +∆) ·∆︸ ︷︷ ︸
≈pH(f0)∆

− (jL(f0)− jL(f0 +∆))︸ ︷︷ ︸
≈−j′L(f0)∆=pL(f0)∆

 ≈ (ρ− r) (pH(f0)− pL(f0)) ·∆. (21)

The crux of the matter is that the proceeds of long-term debt issuance depend on its price in the
high state, whereas the impact on short-term borrowing is determined by long-term debt’s price in
the low state.

The cost of this adjustment depends on the price impact of such trade, which is

Cost of one period adjustment ≈ −pH(f0 +∆)∆+ pH(f0)∆ = −p′H(f0) (∆)2 .
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In equilibrium, the marginal benefit is equal to the marginal cost, so

(ρ− r)
(
pH(f0)− pL(f0)

)
∆ ≈ −p′H(f0) (∆)2 =⇒ ∆ =

(ρ− r)
(
pH(f0)− pL(f0)

)
−p′H(f0)

.

The issuance function in the other cases of Proposition 7 can be derived using similar heuristic
arguments. When the borrower fully exhausts borrowing capacity, the increment in long-term
debt’s market value is fully offset by the reduction in short-term debt, so no long-term debt is
issued. For example, in the high state, when f > f†, the reduction in short-term debt becomes
jH(f0) − jH(f0 + ∆), which is approximately pH(f0) · ∆. In this case, the total marginal benefit
from this adjustment (the counterpart of (21)) becomes zero.

Long-Term Debt Buyback

An interesting feature in (20) is that the optimal issuance of long-term debt could be negative,
implying that the borrower actually buys back long-term debt. This result differs from the literature
on the leverage-ratchet effect, which predicts a borrower without commitment to debt issuance
would never actively buy back the outstanding debt (DeMarzo and He, 2021; Admati et al., 2018).
The reason is as follows. Once f > f†, the borrower will take too much short-term debt, generating
a rollover risk whereby default will occur following a regime shift. For f sufficiently close to (but
still below) f†, the borrower could find it optimal to buy back some long-term debt and reduce the
chances that f rises above f†. Note that (20) implies buyback occurs whenever pH(f) < pL(f),
suggesting that long-term debt is riskier in the upturn compared to the downturn. Intuitively, for
f sufficiently close to (but still below) f†, a few negative Brownian shocks could push f above f†,
which leads to an immediate default following a regime switch. By contrast, under the same f in
the low state, a default may only occur after a long sequence of negative Brownian shocks that
push f to f bL. Therefore, the default risk can be higher in the high state than in the low state.

That being said, we would like to point out that ex-post buyback is not why the borrower
issues long-term debt ex-ante. Note that the exercise in subsection 3.2 shows that the borrower
will benefit from long-term debt issuance at t = 0 even if there is no further opportunity afterward
to either issue long-term debt to buy back short-term debt or to repurchase outstanding long-term
debt issued at t = 0.

Moreover, we provide a sufficient condition under which the borrower never buys back long-term
debt. Our mechanism still goes through under this condition.

Corollary 1. The borrower never repurchases its long-term debt if η ≥ λ.
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Initial Debt Issuance

So far, our analysis has shown that for a given level f > 0, the borrower could issue/repurchase
some long-term debt. However, it remains a question whether an initially unlevered borrower would
issue any long-term debt. The next proposition provides the necessary conditions under which this
would be the case.

Proposition 8. Suppose that λ > λ̄. If η > 0 and p′H(0) > −∞, then there exists an equilibrium
in which an initially unlevered borrower will issue long-term debt, that is lim

f→0
gH(f)f > 0.

Without the disaster shock, an unlevered borrower would never issue long-term debt. Intuitively,
if there is no disaster, a marginal unit of long-term debt is riskless for the unlevered borrower in
both the upturn and the downturn; that is, pH(0) = pL(0) = 1. According to (20), there is no long-
term debt issuance. The second condition p′H(0) > −∞ is needed to ensure that the price impact
of issuing an additional unit of long-term debt is not too large to deter the unlevered borrower from
issuing it.

Let us conclude this subsection by pointing out that under the conditions in Proposition 8, there
exists another Markov Perfect Equilibrium in which the unlevered borrower only issues short-term
debt, and the reasons are similar to the zero-leverage equilibrium in (DeMarzo and He, 2021, p. 35).

3.4 Comparative Statics and Debt Dynamics

We start by considering how different primitive variables affect f†, which captures the incentives
to issue long-term debt. As shown in Figure 1, this threshold is determined by the trade-off between
the additional leverage benefits versus the bankruptcy cost. Thus, any parameter that increases
the continuation value after the regime switch (thus, increasing bankruptcy cost) should increase
f†, whereas parameters that increase borrowing capacity in the high state should decrease f†. It is
immediate that f† is increasing λ and decreasing in µH , because both affect jH(f) but not jL(f).
Figure 4 presents some further comparative statics. The left panel shows that f† increases in µL.
Intuitively, a higher growth rate of cash flows in the low state increases the expected bankruptcy
cost upon regime switching and makes risky short-term debt more costly. The right panel confirms
the earlier result that f† increases in λ. A comparison across different curves in both panels shows
that f† decreases in ξ or equivalently increases in the maturity of long-term debt. Intuitively,
debt with longer maturity is more sensitive to changes in firm value and, therefore, provides more
hedging benefits.

The left panel Figure 5 describes how the maturity of long-term debt affects firm value, and the
results show some interesting non-monotonic patterns. Intuitively, when the maturity of long-term
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Figure 4: Comparative statics f†.

The baseline parameters in this figure are as follows: ρ = 0.1, r = 0.05, µH = 0.1, µL = 0, λ = 0.5, η = 0.1, σ = 0.5,
π = 0.

debt gets longer, the dilution problem gets more severe. Meanwhile, the longer-term debt provides
better hedging, so the overall effect can be non-monotonic. The right panel shows that in the
economy with only long-term debt, the firm value decreases with maturity because longer-maturity
debt is subject to more future dilution.11

For the rest of this subsection, we focus on a limiting model σ → 0. This allows us to conduct
more comparative statics and study debt structure dynamics. We impose an additional assumption
µL + ξ < 0 < µH + ξ so that in the absence of further long-term debt issuance, ft decreases in
the high state but increases in the low state. In this case, the equilibrium issuance function can
be explicitly written in primitive variables. Below, we briefly describe the results, and details are
presented in Internet Appendix A.3.

Proposition 9 (Limiting long-term debt issuance policy). Suppose λ > λ̄, µL + ξ < 0, and
µH + ξ > 0. Let γ = r+η−µL

−(ξ+µL)
> 1. When σ → 0, the equilibrium issuance policy converges to:

gθ(f) =
ρ− r

ρ+ λ− r

[
η(ξ + µH) + (µH − µL)(r + ξ)

r + η + ξ

+η

(
ξ + µH
ρ+ λ+ ξ

+
−(ξ + µL)

r + η + ξ

)(
f

f bL

)−(γ−1)
]
1{f<f†,θ=H}. (22)

11This model corresponds to DeMarzo and He (2021) adapted with regime-shift shocks. The solution is presented
in the Internet Appendix.
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Figure 5: Comparative statics firm value and debt capacity.

The baseline parameters in this figure are as follows: ρ = 0.075, r = 0.05, µH = 0.2, µL = 0.1, λ = 0.25, η = 0.1,
σ = 1. The figures consider the relation between total debt and firm value. They are constructed by considering the
upper branch of the graph {(pH(f)f + dH(f), pH(f)f + jH(f))}. In the case of both short- and long-term debt, we
restrict attention to the interval (0, f†). On (f†, f

b
H), total debt and firm value decrease in f .

For any f ∈ (0, f†), the issuance function gH(f) is:

• Increasing in ρ, η, and µH , and decreasing in λ.

• If η > 0, there is f̃ ∈ (0, f†] such that gH(f) is increasing in µL for f < f̃ and decreasing in
µL for f > f̃ . If η = 0, gH(f) is decreasing in µL for all f ∈ [0, f†].

The results in Proposition 9 are straightforward. Higher ρ increases the benefits of leverage;
higher η and µH both increase the difference between pH(f) − pL(f) for any given f . Therefore,
the borrower issues more long-term debt. Meanwhile, when λ gets higher, pL(f) stays unchanged,
whereas pH(f) gets lower. As a result, the borrower issues less long-term debt.

Next, we characterize the dynamics of ft.

Proposition 10. Consider the limiting model (σ → 0). Under the parametric conditions in
Proposition 9, the ratio of long-term debt to earnings ft follows the piecewise-deterministic process.

dft
dt

=


−(ξ + µL)ft if θt = L

− ν
γ−1

[
1− κ

(
fbL
ft

)γ−1
]
ft if θt = H and ft ∈ (0, f†)

−(ξ + µH)ft if θt = H and ft ∈ (f†, f
b
H),
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where ν · κ ≥ 0 and ν > 0 only if

ξ + µH
−(ξ + µL)

λ

ρ− r
>

r + ξ

r + η + ξ
.

If ν > 0, let f⊺ ≡ κ
1

γ−1 f bL be the unique solution to gH(f⊺) = µH + ξ. In the high state:

• If ν < 0 or f⊺ > f†, ft converges to f†.

• If ν ≥ 0 and f⊺ < f†, ft converges to f⊺. In this case,

– The speed of adjustment ν is increasing in η, λ, µH , and µL, and it is decreasing in ρ.
It is increasing in ξ if and only if

ξ > −µL −

√
λ (µH − µL) (r + η − µL)

ρ+ λ− r
.

– The target f⊺ is increasing in ρ, η, and decreasing in λ and µH .

One can interpret f⊺ as the target ratio of long-term debt to cash flow. Figure 6 illustrates
the dynamics when f⊺ ∈ (0, f†), with the left and right panels, respectively, describe the evolution
of long- and short-term debt. Starting in the high state, the path of ft converges towards the
target f⊺ until the regime switches. The convergence path for f0 < f⊺ (red path in the figure) is
straightforward. For f0 > f† (blue path in the figure), the borrower initially borrows risky short-
term debt and retires maturing long-term debt until f† (this corresponds to time τ† in the figure).
Once this threshold is reached, the borrower reduces the amount of short-term debt and starts to
issue long-term debt. After the regime shift at τλ, the borrower stops issuing long-term debt and
only borrows short-term, and ft increases until the firm eventually defaults.

If either ν < 0 or f⊺ > f†, then ft converges towards f†, after which it stays there until the
state transition.12

12This last case presents some technical complications because there is a difference between the limit equilibrium
when σ → 0 and the equilibrium in a model with σ = 0. At f†, we have that gH(f†−) > µH+ξ and gH(f†+) < µH+ξ.
A classical solution for the path of ft only exists if we set gH(f†) = ξ + µH – so the threshold f† is absorbing. If
σ = 0, this policy is consistent with the equilibrium price pH(f†) = j′H(f†) only if the probability of defaulting
upon a transition is positive but less than one. We can construct an equilibrium with this property by setting
dH(f†) = jL(f†) and specifying a mixed strategy of default (upon a transition to the low state) so the price of long-
term debt satisfies no-arbitrage at f†. Such construction is possible because at f† the equity holders are indifferent.
When σ > 0, the particular issuance policy at f† is not a problem because ft fluctuates around the threshold f†. If
we set gH(f†) = gH(f†−), the existence result in Nakao (1972) implies the existence of a unique strong solution to
the SDE for ft for any σ > 0. We can interpret the path of ft in the limit as an approximation for small σ > 0 where
in the high state ft mean reverts to f†.
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Figure 6: Sample path ft and dt for different values of f0.

The parameters in this figure are as follows: ρ = 0.2, r = 0.1, µH = 0.2, µL = −0.2, ξ = 0.1, λ = 0.3, η = 0.1. The
shock arrives at τλ = 5. The blue corresponds to an initial value f0 = 4.90, while the red line has f0 = 0.82.

4 Extensions, Robustness, and Empirical Implications

This section starts by considering the several extensions to illustrate the main economic mecha-
nisms. In subsection 4.1, we explore the role of market incompleteness by introducing the possibili-
ties of short-term debt renegotiation. Results show that long-term debt is not issued if renegotiation
is frictionless. In subsection 4.2, we show that results are similar if there are no regime shifts but
cash flows have downside jumps. Finally, subsection 4.3 discusses the model’s empirical relevance.

4.1 Restructuring of Short-Term Debt

We have established in subsection 3.2 that long-term debt has hedging benefits because with
downward jumps, the adjustment in short-term debt is not always possible, and the borrower may
default. Now, we show that if, instead, short-term debt can be frictionlessly restructured, it crowds
out reasons to use long-term debt.

To do this, we need to distinguish between default and bankruptcy. Whenever the borrower
announces a default, and there is outstanding short-term debt, short-term debt can be restructured
with some probability. Notice that in both states θ ∈ {H,L}, when the borrower defaults at f bθ ,
the amount of short-term debt is zero. Therefore, renegotiating short-term debt is only relevant
upon a regime shift from H to L. The renegotiation game goes as follows. With probability 1−α,
renegotiating is impossible, and the firm goes bankrupt. With probably α, the firm enters into a
renegotiation process. In this case, the equity holder makes the offer with probability β and short-
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term creditors with probability 1 − β. If the short-term creditors make the offer, and this offer is
rejected, the firm goes bankrupt. If the equity holder makes the offer and the offer is rejected, she
can still choose between repaying the original short-term debt and bankruptcy.

We have the following result.

Proposition 11. The firm never issues long-term debt if the short-term debt can be renegotiated
without friction. That is, if α = 1, then gθ(f) = 0 for all f . If f† > 0, then f† is decreasing in α.

The intuition behind this result is similar to the one with derivative contracts in subsection 3.2.
The benefit of long-term debt is to provide hedging against state transition. However, hedging is
no longer needed if the short-term debt can be restructured.

4.2 Jump Risk

This subsection shows that our mechanism continues to hold if the large negative shock is
modeled as downward jumps to the cash flow. Specifically, we assume the cash flow follows a
jump-diffusion process:

dXt = µXt−dt+ σXt−dBt −
(
1− ω−1

)
Xt−dNt, (23)

where Nt is a Poisson process with intensity λ and ω ∈ (1,∞) is a constant. We can construct
an equilibrium characterized by thresholds f† and f b. It is easily established that the scaled value
function j(f) satisfies the delay differential equation

(ρ+ λ− µ) j(f) = 1− (r + ξ) f − (µ+ ξ) fj′(f) +
1

2
σ2f2j′′(f)

+ max
{
(ρ+ λ− r)

j(ωf)

ω
, (ρ− r)j(f)

}
,

with value matching and smooth pasting conditions j(f b) = j′(f b) = 0. The optimal short-term
debt policy is given by

d(f) =


j(ωf)
ω if f ∈ [0, f†)

j(f) if f ∈ [f†, f
b],

where the threshold f† satisfies the condition (ρ + λ − r)
j(ωf†)
ω = (ρ − r)j(f†). The issuance of

long-term debt satisfies g(f) = 0, for g(f) = 0 ∀f ∈ (f†, f
b], where f b is the endogenous default

boundary. The issuance of long-term debt follows

g (f) =
(ρ− r) (p (f)− p (ωf))

−fp′ (f)
1{f<f†}. (24)
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In other words, long-term debt is issued if the amount of outstanding long-term debt is low relative
to the operating cash flow. Equation (24) resembles (20): the difference in prices p (f) − p (ωf)

reflects the drop in the long-term debt’s price following the downward jump, and the denominator
captures the sensitivity of long-term debt price to issuance.

The issuance of short-term debt is also similar to the full model in section 3. Short-term debt is
riskless when f ≤ f† and the amount of issuance is d(f) = j(ωf)

ω . On the other hand, when f > f†,
short-term debt becomes risky, and the amount of issuance becomes d(f) = j(f). We delegate the
details to the Internet Appendix B.3.

4.3 Empirical Implications

Stock versus flow Static models of debt maturity tend to make the same predictions regarding
the stock (outstanding) and the flow (issuance) of debt. One merit of constructing a dynamic
model of debt maturity is to differentiate between the two. Our paper implies that the relationship
between credit risk and maturity depends on whether we consider outstanding debt or new issuance
as the dependent variable. For example, in the upturn, credit risk is high when the borrower has
a significant amount of long-term debt outstanding (i.e., f is very close to f bH). Thus, a positive
relationship exists between credit risk and the maturity of outstanding long-term debt. However,
close to the default boundary, newly issued debt is exclusively short-term, so there is a negative
relation between credit risk and the maturity of the newly issued debt.

Gradual and sudden defaults. Our model generates novel empirical implications on debt
maturity structure and defaults. In particular, the borrower defaults in two circumstances. First,
the ratio of long-term debt to cash flow ft gets sufficiently high such that the borrower approaches
the default boundary gradually from below (ft ↑ f bL or ft ↑ f bH). In this case, default occurs
gradually after the deterioration of the fundamental cash flows relative to the outstanding long-
term debt. In the second circumstance, default occurs after a transition from the upturn to the
downturn, and the borrower has taken too much risky short-term debt before the transition. These
can be implications for future empirical tests.

Cross-sectional implications. We have shown that with only small shocks (diffusion risks),
the borrower borrows exclusively short-term debt. By contrast, the borrower issues a combination
of long- and short-term debt when there are large downside risks (such as the regime switch and
the jump risks introduced in subsection 4.2) to hedge. Cross-sectionally, one should observe that
firms more exposed to large downside shocks use more long-term debt. One interpretation is that
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Brownian shocks are small and diversifiable, whereas regime-shift shocks are systematic and non-
diversifiable. Under such an interpretation, our paper implies that firms with more non-diversifiable
risk use more long-term debt.

Time series implications. In the main model, we have assumed that the low state θt = L is
absorbing. If we interpret the changes in the regime as business cycles, it is natural to assume that
states are transitory. We can extend the model to consider this situation. Such a model is solved
in Internet Appendix B.5, and we explore a few patterns.

Our result implies that market leverage is countercyclical, which is consistent with the evidence
provided in Halling et al. (2016). Our model implies the borrower’s debt maturity is pro-cyclical,
consistent with the findings in Chen et al. (2021) at the aggregate level. At the firm level, Mian and
Santos (2018) show that firms manage maturity to hedge refinancing risk in good times, and the
time variation is driven by demand-side (i.e., firms) factors. Moreover, this pattern is concentrated
in investment grade-rated firms.

Anecdotal examples We can illustrate the predictions of our model by considering real-world
examples. Figure 7 plots debt maturity structure from 1990 onward for the Pacific Gas and Elec-
tric Company (PG&E) and General Motors (GM). PG&E entered bankruptcy twice in the last two
decades. It initially entered Chapter 11 bankruptcy on April 6, 2001, and emerged from bankruptcy
in April 2004. In 2019, it filed for bankruptcy on January 29 again and successfully exited on June
20. The left panel plots the maturity of newly issued long-term debt, weighted by the offering
amount. The red-shaded areas marked the two bankruptcies, and the gray areas are NBER reces-
sions. Consistent with our model, the newly-issued bonds have shorter maturities in the NBER
recessions and shortly before the bankruptcies.13 The right panel displays similar patterns for GM,
which filed for bankruptcy on June 8, 2009.

5 Final Remarks

Our paper offers a theory of debt maturity based on a tradeoff between commitment and
hedging. Short-term debt mitigates the lack of commitment problem and incentivizes the borrower
to reduce leverage after negative shocks. Long-term debt offers the borrower hedging benefits by
delaying default after large and negative shocks.

13The maturity of newly-issued debt was also short in 2011, which might be due to the 2010 San Bruno explosion:
PG&E was on probation after being found criminally liable in the fire. In the context of our model, the San Bruno
explosion can be thought of as a transition from a high to a low state after a Poisson shock.
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Figure 7: Time series maturity of new issuance for PG&E and GM

This figure shows the average maturity of bonds in a year (weighted by market value at issuance) and the share of
long-term debt maturing within one year for Pacific Gas & Electric (PG&E) and General Motors (GM). The
gray-shaded area indicates NBER recession, whereas the red-shaded area indicates periods over which these
companies were in bankruptcy procedures. Source: Mergent FISD.

Modeling Choices

We introduce two types of risks in the model. The Brownian motion captures continuous fluc-
tuations in day-to-day operating cash flows, which are meant to be small and frequent. Meanwhile,
a transition across the two states affects the expected growth in cash flow and captures large and
infrequent shocks.

Our modeling choice of short- and long-term debt is motivated by the discrete-time microfoun-
dation. There, short-term debt would last for one period and therefore mature simultaneously. In
the continuous-time setup, this feature is captured by zero-maturity debt that needs to be contin-
uously rolled over. In the discrete-time setup, long-term debt would last for multiple periods, and
the flexibility in issuing it each period would lead to a staggered structure. This feature is well
captured by exponentially maturing debt in the continuous-time setup.

Relation to Short-term Debt and Commitment

The role of short-term debt as a commitment device has been discussed by the previous literature
(Calomiris and Kahn, 1991; Diamond and Rajan, 2001), which emphasizes the demandable feature
of debt and the externalities from depositor runs. Calomiris and Kahn (1991) is about stopping
a crime in progress through a run, and the prospect of a run creates a reward for information
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acquisition. In Diamond and Rajan (2001), there is no crime to be stopped. Instead, uninformed
depositors must run when held up –- they are solving a severe incentive problem. Our paper is
similar in that it also solves the incentive problems in commitment. Whereas both Calomiris and
Kahn (1991) and Diamond and Rajan (2001) emphasize how run externalities create commitment
in banking, our paper shows how the repricing feature of short-term debt (independent of run
externalities) resolves the commitment issue in the context of dynamic capital structure.14

An alternative commitment device widely used by firms is covenant. Introducing covenants
would allow the borrower to reap more benefits from long-term debt issuance. For example, a
covenant that restricts the issuance of long-term debt to be lower than some threshold can limit
the extent of dilution. However, covenants do not eliminate the benefits of short-term debt for
two reasons. First, covenants are written on imperfect proxies of the firm’s fundamentals, and
therefore they don’t completely rule out dilution. Second, following small and frequent shocks to
cash flows, it is more costly for the borrower to adjust long-term debt. By contrast, short-term
debt is more flexible. Therefore, our main mechanism between commitment and hedging continues
to work under covenants.

Relation to Hedging in Corporate Finance

In a Leland-type setup, Diamond and He (2014) also explore the hedging benefits of long-
term debt. Specifically, their paper studies how debt of different maturities affects debt overhang,
broadly defined as any value-enhancing activities taken by equity holders. Recognizing the benefit
of long-term debt, they state that “the long-term debt holders–due to less frequent repricing–share
more losses with equity holders when asset-in-place deteriorate” (p. 740); while discussing the
disadvantage of short-term debt, they state that “not sharing losses in bad times pushes equity
holders to default, eliminating future investment opportunities” (p. 741). Although we do not
explicitly model investment, injecting funds by equity holders to avoid immediate default enhances
the firm value and, therefore, can be considered analogous to investment.

The corporate finance literature has recognized that bankruptcy costs can introduce hedging
benefits to risk-neutral borrowers. (Smith and Stulz, 1985, p. 392) define hedging generally as
the covariance of the firm value with respect to a state variable and argues that hedging reduces
the dependence of firm value on changes in the state variable. In the context of our model, this
state variable is the regime θ. More specifically, (Smith and Stulz, 1985, p. 396) state that “By
reducing the variability of the future value of the firm, hedging lowers the probability of incurring
bankruptcy costs. This decrease in expected bankruptcy costs benefits shareholders.”

14Also see Hu and Varas (2021) on this feature of short-term debt in the context of financial intermediaries.

31



Relation to the Sovereign Debt

A similar trade-off is studied by Arellano and Ramanarayanan (2012), who calibrate a quanti-
tative model of sovereign borrowing with two maturities. Our paper complements their analysis in
several dimensions. First, we develop a tractable model with a transparent characterization of the
equilibrium. Unlike Arellano and Ramanarayanan (2012), we can fully characterize the optimal
debt policy and highlight the fundamental economic forces underlying the maturity choices. Second,
our framework identifies the type of risk – large downside risk – that the borrower wants to hedge
using long-term debt. Specifically, we emphasize that by delaying default, long-term debt provides
better hedging against downside risk, which is valued in good times. We show that long- and
short-term debt offer different kinds of flexibility following shocks. Short-term debt incentivizes
the borrower to reduce leverage in response to negative shocks. If there are only small shocks,
short-term debt is chosen such that leverage is never excessive. When there are large negative
shocks, long-term debt provides a hedge that reduces bankruptcy costs and enhances borrowing
capacity. By contrast, Arellano and Ramanarayanan (2012) emphasizes that long-term debt offers
a hedge against future fluctuations in spreads. However, because credit spreads are endogenous,
it is unclear what underlying risks drive the fluctuations and, hence, where the hedging benefits
come from. Finally, The literature in sovereign debt typically assumes a risk-averse borrower and
can benefit from hedging. These hedging benefits are absent in our paper, given that we assume
a risk-neutral borrower. In our paper (and also DeMarzo et al. (2021)), it is the bankruptcy cost
that induces a risk-neutral borrower to hedge.
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Appendix

A Proofs

Proof of Proposition 1

Proof. We prove the result for JH , and the one for JL follows similar steps. Let θt = H and τλ ≥ t

be the time that the state switches from H to L. By the principle of dynamic programming,

Vt− = sup
τb,gs,Ds

Et
[ ∫ τb∧τλ

t
e−ρ(s−t)

(
(Xs − (r + ξ)Fs + psgsFs − ys−Ds−) ds+ dDs

)
+ e−ρ(τb∧τλ−t)Vτλ1{τb≥τλ}

]
= sup

τb,gs,Ds

Et
[ ∫ τb

t
e−(ρ+λ)(s−t)

(
(Xs − (r + ξ)Fs + psgsFs − ys−Ds−) ds+ dDs

)
+ e−ρ(τλ−t)Vτλ1{τb≥τλ}

]
= sup

τb,gs,Ds

Et
[ ∫ τb

t
e−(ρ+λ)(s−t)

(
(Xs − (r + ξ)Fs + psgsFs − ys−Ds−) ds+ dDs

)
+ e−ρ(τλ−t)max {Jτλ −Dτλ−, 0}1{τb≥τλ}

]
= sup

τb,gs,Ds

Et
[ ∫ τb

t
e−(ρ+λ)(s−t)

(
(Xs − (r + ξ)Fs + psgsFs − ys−Ds−) ds+ dDs

+ λmax {Js −Ds−, 0} ds
)]
,

where we have used the definition Vτλ = max {Jτλ −Dτλ−, 0}. Using the integration by parts
formula for semi-martingales (Corollary 2 in Section 2.6 of Protter (2005)), we get

Et
[ ∫ τb

t
e−(ρ+λ)(s−t)dDs

]
= Et

[
e−(ρ+λ)(τb−t)Dτb

]
−Dt− + Et

[ ∫ τb

t
e−(ρ+λ)(s−t)(ρ+ λ)Ds−ds

]
.

At the time of default, Dτb = 0. Hence

Vt− = sup
τb,gs,Ds

Et

[∫ τb

t
e−(ρ+λ)(s−t)

{
Xs − (r + ξ)Fs + psgsFs

+ (ρ+ λ− ys−)Ds− + λmax {JL(Xs, Fs)−Ds−, 0}
}
ds

]
−Dt−.
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Limite liability requires that Vt− ≥ 0, so the amount of short-term borrowing must satisfy the
constraint Dt− ≤ Jθt(Xt, Ft).

Proof of Proposition 2

Proof. In the low state, the borrower chooses short-term debt DL = JsL and only defaults upon the
disaster shock. So the short rate is ysL(X) = r + η, which implies the value of the firm is

JsL (X) =
X

r + η − µL
.

In the high state, there is a choice between borrowing risky and riskless debt. If she borrows
risky short-term debt, again, she would like to take 100% leverage, in which case

JsH (X) =
X

r + λ− µH
.

On the other hand, if she borrows riskless debt up to JsL(X), the firm value is

JsH (X) =
X

ρ+ λ− µH

(
1 +

ρ+ λ− r

r + η − µL

)
.

From here, we get that the value of the firm is

JsH(X) = Xmax

{
1

r + λ− µH
,

1

ρ+ λ− µH

(
1 +

ρ+ λ− r

r + η − µL

)}
.

Proof of Proposition 3

First, we derive an equation for the scaled value function. Second, we prove the existence and
uniqueness of a solution to the scaled value function and a single-crossing property in the high
state.

Low state θt = L. Let gθ(f) = 0, we can derive the following equation:

(ρ+ η)J0
L (X,F ) = max

D0
L∈[0,J

0
L(X,F )]

X − (r + ξ)F +
(
ρ+ η − y0L

)
D0
L

− ξF
∂J0

L(X,F )

∂F
+ µLX

∂J0
L(X,F )

∂X
+

1

2
σ2X2∂

2J0
L(X,F )

∂X2
. (A.1)
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Note that the choice of short-term debt D0
L is capped by the level of value function J0

L, and the
choice of D0

L also affects J0
L. Substituting J0

θ (X,F ) = Xj0θ (f) in equation (A.1), we get the
following HJB for the scaled value function j0L (f):

(ρ+ η − µL) j
0
L (f) = max

d0L∈[0,j
0
L(f)]

1−(r + ξ) f+
(
ρ+ η − y0L

)
dL−(µL+ξ)fj

0′
L (f)+

1

2
σ2f2j0

′′
L (f).

(A.2)

Given that the coefficient in front of d0L satisfies ρ + η − y0L = ρ − r > 0, it is always optimal for
the borrower to issue as much short-term debt as possible, which leads to d0L(f) = j0L(f). The rest
of the problem becomes standard. The borrower defaults if f ≥ f bL, where f bL satisfies the value
matching condition j0L(f

b
L) = 0 and the smooth pasting condition j0

′
L (f

b
L) = 0.

High state θt = H. We arrive at the HJB:

(ρ+λ)J0
H (X,F ) = max

D0
H∈[0,J0

H(X,F )]
X− (r + ξ)F +

(
ρ+ λ− y0H

)
D0
H +λmax

{
J0
L(X,F )−D0

H , 0
}

− ξF
∂J0

H(X,F )

∂F
+ µHX

∂J0
H(X,F )

∂X
+

1

2
σ2X2∂

2J0
H(X,F )

∂X2
. (A.3)

The scaled value function j0H(f) therefore satisfies

(ρ+ λ− µH) j
0
H(f) = max

d0H∈[0,j0H(f)]
1− (r + ξ) f +

(
ρ+ λ− y0H

)
d0H + λmax

{
j0L(f)− d0H , 0

}
− (µH + ξ)fj0

′
H(f) +

1

2
σ2f2j0

′′
H (f). (A.4)

As usual, the value function satisfies the value matching and smooth pasting conditions j0H(f bH) = 0

and j0
′
H(f

b
H) = 0 at the default boundary f bH .

The formulas for the value function j0θ (f) can be found in Proposition 12 in Internet Appendix
A.2.

The rest of the proof consists of characterizing the optimal short-term debt policy in the high
state, which consists of two parts. In the first part, we show the existence and uniqueness of a
solution. In the second part, we prove a single-crossing property and therefore show that it is
optimal for the borrower to issue riskless short-term debt d0H = j0L (f) if f ≤ f†. We start by
establishing the uniqueness of the equilibrium.

A3



Existence and Uniqueness: For an arbitrary positive function j̃, we define the following oper-
ator:

Φ(j̃)(f) ≡ sup
τ≥0

E
[∫ τ

0
e−ρ̂t

(
1− (r + ξ)zt + ν(zt, j̃(zt))

)
dt
∣∣∣z0 = f

]
subject to dzt = −(ξ + µH)ztdt− σztdBt,

where

ν(z, j̃) ≡ max
d0H∈[0,j̃]

(
ρ+ λ− y0H(z, d

0
H)
)
d0H + λmax

{
j0L(z)− d0H , 0

}
= max{(ρ+ λ− r) j0L(z), (ρ− r) j̃},

and ρ̂ ≡ ρ+ λ− µH . It follows from the HJB equation that the value function j0H is a fixed point
j0H(f) = Φ(j0H)(f). Hence, it is enough to show that the operator Φ is contraction to get that the
solution is unique. First, we can notice that Φ is a monotone operator: For any pair of functions
j̃1 ≥ j̃0, we have ν(f, j̃1) ≥ ν(f, j̃0); thus it follows that Φ(j̃1)(f) ≥ Φ(j̃0)(f). Next, we can verify
that Φ satisfies discounting: For a ≥ 0, we have

ν(z, j̃ + a) = max{(ρ+ λ− r) j0L(z), (ρ− r) (j̃ + a)} ≤ (ρ− r)a+ ν(z, j̃),

so letting τ∗(j̃) denote the optimal stopping policy, we have

Φ(j̃ + a)(f) = E

[∫ τ∗(j̃+a)

0
e−ρ̂t

(
1− (r + ξ)zt + ν(zt, j̃(zt) + a)

)
dt
∣∣∣z0 = f

]

≤ E

[∫ τ∗(j̃+a)

0
e−ρ̂t

(
1− (r + ξ)zt + ν(zt, j̃(zt))

)
dt
∣∣∣z0 = f

]
+
ρ− r

ρ̂
E
[
1− e−ρ̂τ

∗(j̃+a)
∣∣∣z0 = f

]
a

≤ E

[∫ τ∗(j̃)

0
e−ρ̂t

(
1− (r + ξ)zt + ν(zt, j̃(zt))

)
dt
∣∣∣z0 = f

]
+
ρ− r

ρ̂
E
[
1− e−ρ̂τ

∗(j̃+a)
∣∣∣z0 = f

]
a

= Φ(j̃)(f) +
ρ− r

ρ̂
E
[
1− e−ρ̂τ

∗(j̃+a)
∣∣∣z0 = f

]
a ≤ Φ(j̃)(f) +

ρ− r

ρ+ λ− µH
a.

Thus, the operator Φ is monotone and satisfies discounting, it follows then by Blackwell’s sufficiency
conditions that Φ is a contraction, which means that there is a unique fixed point j0H(f) = Φ(j0H)(f).
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Optimal Short-Term Debt Policy: We start with the following result, which will be used later
on. First, let

λ̄ ≡ −ρ− µH
2

+

√(
ρ− µH

2

)2

+ (ρ− r) (µH − µL + η). (A.5)

Lemma 1. The condition
(ρ+ λ− r) j0L (0) > (ρ− r) j0H (0) .

is satisfied if and only if λ > λ̄.

Proof. See Internet Appendix.

Next, the following result shows that it is optimal for the borrower to issue d0H = j0L (f) when
f ≤ f† and d0H = j0H (f) otherwise.

Lemma 2 (Single-crossing). There exists a unique f† ∈
(
0, f bL

)
such that (ρ+ λ− r) j0L (f) ≥

(ρ− r) j0H (f) if and only if f ≤ f†.

Proof. See Internet Appendix.

Proof of Proposition 4

Proof. When the borrower can commit to not issuing any long-term debt after t = 0, i.e., gH (f) =

gL (f) ≡ 0. The debt price in the low state satisfies the following asset pricing equation

(r + ξ + η) p0L(f) = (r + ξ) +
(
−ξ − µL + σ2

)
fp0

′
L (f) +

1

2
σ2f2p0

′′
L (f) , (A.6)

where the default boundary f bL is determined from Internet Appendix A.2. We guess the solution
of the debt price takes the form

p0L(f) = A0
1 +A0

2f
γ1−1 +A0

3f
γ2−1.

Combining with p0L(f
b
L) = 0 and lim

f→0
p0L(f) <∞, we know

p0L(f) =
r + ξ

r + η + ξ
− r + ξ

r + η + ξ

(
f

f bL

)γ1−1

. (A.7)

The equation for the price of debt in the high state depends on the value of λ. If λ ≤ λ̄. asset
pricing equation is

(r + ξ + λ) p0H(f) = (r + ξ) +
(
−ξ − µH + σ2

)
fp0

′
H (f) +

1

2
σ2f2p0

′′
H (f) , (A.8)
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where the default boundary f bH is determined from Internet Appendix A.2. We guess the solution
of the debt price takes the form

p0H(f) = B̃0
1 + B̃0

2f
β1−1 + B̃0

3f
β2−1.

Combining with p0H(f
b
H) = 0 and lim

f→0
p0H(f) <∞, we obtain

p0H(f) =
r + ξ

r + ξ + λ
− r + ξ

r + ξ + λ

(
f

f bH

)β1−1

, (A.9)

where the default boundary f bH is determined from Internet Appendix A.2.
On the other hand, if λ > λ̄, the price in the high state satisfies the asset pricing equation

(r + ξ + λ) p0H(f) = (r + ξ) + λp0L(f)1{d0H(f)≤j0L(f)}
+
(
−ξ − µH + σ2

)
fp0

′
H (f) +

1

2
σ2f2p0

′′
H (f) ,

(A.10)

where the default boundary f bH and the threshold f† are determined from Internet Appendix A.2.
When f ∈ [0, f†], we guess a solution of the form

p0H(f) = B0
1 +B0

2f
γ1−1 +B0

3f
β1−1 +B0

4f
β2−1. (A.11)

Plugging into equation (A.10), we can get

B0
1 =

(r + ξ) (r + η + ξ + λ)

(r + ξ + λ) (r + η + ξ)
;

B0
2 =

−λ r+ξ
r+η+ξ

(
f bL
)1−γ1

r + ξ + λ− (−ξ − µH + σ2) (γ1 − 1)− 1
2σ

2 (γ1 − 1) (γ1 − 2)
;

The condition lim
f→0

p0H(f) < ∞ implies that B0
4 = 0, which implies B0

3 is the only unknown in
equation (A.11).

When f ∈
(
f†, f

b
H

]
, we guess a solution of the form

p0H(f) = C0
1 + C0

2f
β1−1 + C0

3f
β2−1, (A.12)

Plugging into equation (A.10), we can get C0
1 = r+ξ

r+ξ+λ .
{
C0
2 , C

0
3

}
are the unknowns in equa-

tion (A.12). In the end, we solve the three unknowns
{
B0

3 , C
0
2 , C

0
3

}
from the following boundary
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conditions:

p0H(f
b
H) = 0,

p0H(f
−
† ) = p0H(f

+
† ),

p0
′
H(f

−
† ) = p0

′
H(f

+
† ).

Having determined the price of long-term debt, we can analyze the issuance decision at t = 0. Let
H0 (f0) = j0H (f0) + p0H (f0) f0 denote the value of the firm given long-term debt over cash flows
f0. When λ ≤ λ̄, from the closed-form solutions of j0H (f) and p0H (f), we know p0H (f) = −j0H (f)

for any f0 ∈
[
0, f bH

]
. Since H0′ (f0) = j0

′
H (f0) + p0H (f0) + p0

′
H (f0) f0 = −j0′′H (f0) f0 < 0, for any

f0 > 0, H0 (f0) < H0 (0) =
Js
H(Xt)
Xt

. This implies it is optimal for the borrower does not issue any
long-term debt at t = 0 when λ ≤ λ̄.

When λ > λ̄, H0′ (f0) = j0
′
H (f0)+p

0
H (f0)+p

0′
H (f0) f0. From the closed-form solutions of j0H (f)

and p0H (f), we can get

H0′ (f0) |f0=0 =
r + ξ

r + η + ξ

η (ρ− r)

(r + ξ + λ) (ρ+ ξ + λ)
> 0. (A.13)

It implies there exists a f∗0 > 0 such that

H0 (f∗0 ) = j0H (f∗0 ) + p0H (f∗0 ) f
∗
0 > H0 (0) =

JsH (Xt)

Xt
.

Therefore, the borrower optimally issues a positive amount of long-term debt f∗0 at t = 0.

Proof of Proposition 6

First, we demonstrate that the joint value jθ(f) under no commitment is equivalent to the
value j0θ (f) without long-term debt issuance. Second, we prove jθ(f) is strictly convex so that it is
optimal for the borrower to issue long-term debt smoothly.

From the value function (7) and substituting Jθ (X,F ) = Xjθ (f), we get the following HJB
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equations for the scaled value function jθ (f):

(ρ+ η − µL) jL (f) = max
gL, dL∈[0,jL(f)]

1− (r + ξ) f +
(
pL (f) + j

′
L(f)

)
gLf + (ρ+ η − yL) dL

− (µL + ξ)fj
′
L(f) +

1

2
σ2j

′′
L(f)

(ρ+ λ− µH) jH(f) = max
gH , dH∈[0,jH(f)]

1− (r + ξ) f +
(
pH (f) + j

′
H(f)

)
gHf + (ρ+ λ− yH) dH

+ λmax {jL(f)− dH , 0} − (µH + ξ)fj
′
H(f) +

1

2
σ2f2j

′′
H(f).

(A.14)
If the borrower finds it optimal to adjust debt smoothly, then it must be the case that this coefficient
equals zero, or equivalently,

pθ(f) = −j′θ(f). (A.15)

Given any smooth equilibrium with value function jθ(f), (A.14) and (A.15) imply (11) and
(12), and as a result setting the issuance policy to gθ = 0 does not change the equity value jθ(f).
Hence, the value jθ(f) under this equilibrium could be obtained under no long-term debt issuance,
which corresponds to j0θ (f).

We also need to verify that the equity holders cannot benefit from issuing an atom ∆, in which
case they get a payoff jθ(f + ∆) + pθ(f + ∆)∆. The first order condition with respect to ∆ is
j′θ(f + ∆) + pθ(f + ∆) + p′θ(f + ∆)∆ = p′θ(f + ∆)∆ = 0. Which means that either ∆ = 0 or
p′θ(f + ∆) = 0. The second order condition is p′′θ(f + ∆)∆ + p′θ(f + ∆) ≤ 0, which evaluated
at ∆ = 0 yields p′θ(f) ≤ 0. It follows from the first and second-order conditions that a smooth
equilibrium requires that p′θ(f) = −j′′θ (f) < 0.

From the closed-form solution for jL (f) we immediately obtain that j′′L(f) > 0. Next, we verify
that jH (f) is also a strictly convex function on

[
0, f bH

]
, so that it is indeed optimal for the borrower

to issue long-term debt smoothly.

Strict convexity of jH (f) on
[
0, f bH

]
. The proof relies on a few auxiliary lemmas.

Lemma 3.
j
′
H (f) ≥ −1, ∀f ∈

[
0, f bH

]
,

Proof. See Internet Appendix.

Lemma 4.
f bH >

1

r + ξ
and min

{
j
′′
H(0), j

′′
H(f

b
H)
}
> 0,

Proof. See Internet Appendix.
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Lemma 5.
j
′′′
H(f

−
† ) > j

′′′
H(f

+
† ).

Proof. See Internet Appendix.

Now we are ready to verify that the solution to the HJB equation is convex. We differentiate
the HJB twice and let ũ ≡ fj

′′
H to get

(ρ+ λ+ ξ) ũ = (ρ+ λ− r) fj
′′
L −

(
µH + ξ − σ2

)
fũ′ +

1

2
σ2f2ũ′′ f ∈ (0, f†) (A.16)

(r + λ+ ξ) ũ = −
(
µH + ξ − σ2

)
fũ′ +

1

2
σ2f2ũ′′ f ∈ (f†, f

b
H). (A.17)

By the maximum principle in Theorem 1, ũ cannot have an interior nonpositive local minimum
in (0, f†) ∪ (f†, f

b
H). Because ũ is differentiable on (0, f†) ∪ (f†, f

b
H), the only remaining possibility

of a nonpositive minimum is that ũ(f†) < 0. As ũ(0) and ũ(f bH) are positive, this requires that
j
′′
H(f†−) + f†j

′′′
H(f†−) = ũ′(f†−) < ũ′(f†+) = j

′′
H(f†+) + f†j

′′′
H(f†+). From the HJB equation it

follows that jH is twice continuously differentiable at f†, so such a kink would require j′′′H(f
−
† ) <

j
′′′
H(f

+
† ), which is ruled out by Lemma 5. We can conclude that ũ does not have an interior

nonpositive minimum, so it follows that ũ(f) = fj
′′
H(f) > 0 on (0, f bH).

Proof of Proposition 7

Proof. First, we consider the slow state. The debt price satisfies the asset pricing equation

(r + ξ + η) pL(f) = (r + ξ) +
(
gL(f)− ξ − µL + σ2

)
fp′L (f) +

1

2
σ2f2p′′L (f) . (A.18)

The indifference condition (16) implies that the price of debt is pL(f) = −j′L(f). Substituting in
(A.18) we get

(r + ξ + η) j′L(f) = − (r + ξ) +
(
gL(f)− ξ − µL + σ2

)
fj′′L (f) +

1

2
σ2f2j′′′L (f) . (A.19)

Combining (A.18) and (A.19) we get
gL(f) = 0.

In the high state, the debt price follows

(r + ξ + λ) pH(f) = (r + ξ)+λpL(f)1{dH(f)≤jL(f)}+
(
gH(f)− ξ − µH + σ2

)
fp′H (f)+

1

2
σ2f2p′′H (f) .
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Suppose λ > λ̄. First, consider the case when f ∈ (0, f†). Differentiating the HJB equation for
jH(f) we obtain,

(r + λ+ ξ) j′H(f) + (r + ξ)− λj′L(f) +
(
µH + ξ − σ2

)
fj′′H(f)−

1

2
σ2f2j′′′H (f)

= (ρ− r) j′L(f)− (ρ− r) j′H(f).

Combining with the indifference condition (16) – which requires that pH (f) = −j′H (f) – we find
that

gH(f) =
(ρ− r) (pH(f)− pL(f))

−fp′H(f)
.

Finally, for f ∈ (f†, f
b
H), we differentiate the HJB equation (A.4) to obtain,

(r + λ+ ξ) j′H(f) + (r + ξ) +
(
µH + ξ − σ2

)
fj′′H(f)−

1

2
σ2f2j′′′H (f) = 0,

which combined with the optimality condition pH (f) = −j′H (f) yields

gH(f) = 0.

Proof of Corollary 1

Proof. We differentiate the HJB at θ = L, which leads to

(r + η + ξ) j
′
L(f) + (r + ξ) +

(
µL + ξ − σ2

)
fj′′L(f)−

1

2
σ2f2j′′′L (f) = 0, ∀f ∈

[
0, f bL

]
.

When f ∈ [0, f†], we differentiate the HJB at θ = H:

(ρ+ λ+ ξ) j′H(f) + (r + ξ)− (ρ+ λ− r) j′L(f) +
(
µH + ξ − σ2

)
fj′′H(f)−

1

2
σ2f2j′′′H (f) = 0.

The difference is

1

2
σ2f2

[
j′′′L (f)− j′′′H (f)

]
−
(
µH + ξ − σ2

)
f
(
j′′L(f)− j′′H(f)

)
− (ρ+ λ+ ξ)

(
j′L(f)− j′H(f)

)
= ηj′L(f)− (µH − µL) fj

′′
L(f) < 0
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since j′L(f) ≤ 0 and j′′L(f) > 0 from the strict convexity. By the maximum principle, △ (f) =

j′L(f)− j′H(f) can not have a nonpositive minimum in the region f ∈ [0, f†].
When f ∈

(
f†, f

b
L

]
, we differentiate the HJB at θ = H:

(r + λ+ ξ) j
′
H(f) + (r + ξ) +

(
µH + ξ − σ2

)
fj′′H(f)−

1

2
σ2f2j′′′H (f) = 0.

The difference is

1

2
σ2f2

(
j′′′L (f)− j′′′H (f)

)
−
(
µH + ξ − σ2

)
f
(
j′′L(f)− j′′H(f)

)
− (r + λ+ ξ)

(
j
′
L(f)− j

′
H(f)

)
= (η − λ) j

′
L(f)− (µH − µL) fj

′′
L(f) < 0

where we assume η ≥ λ and j′L(f) ≤ 0 and j′′L(f) > 0 from the strict convexity. By the maximum
principle, △ (f) ≡ j′L(f) − j′H(f) can not have a nonpositive minimum in the region f ∈

(
f†, f

b
L

]
.

Since both j′L(f) and j′H(f) are continuous for all f ∈
[
0, f bL

]
, △ (f) is continuous for all f ∈

[
0, f bL

]
.

It implies that △ (f) can not have a nonpositive minimum in the region f ∈
[
0, f bL

]
.

In addition, given that

△ (0) = − r + ξ

r + η + ξ
+

(r + ξ) (η + ρ+ λ+ ξ)

(ρ+ λ+ ξ) (r + η + ξ)
=

r + ξ

r + η + ξ

η

ρ+ λ+ ξ
> 0,

△
(
f bL

)
= −j′H(f bL) > 0,

we know △ (f) > 0 for any f ∈
[
0, f bL

]
.

From pL (f) = −j′L(f), pH (f) = −j′H(f), we know pH (f) > pL (f) for any f ∈
[
0, f bL

]
.

Furthermore, when f ∈
[
0, f bL

]
, the firm never repurchases the long-term debt since

g (f) =
(ρ− r) (pH (f)− pL (f))

−fp′H (f)
=

(ρ− r) (pH (f)− pL (f))

fj′′H (f)
> 0.

Proof of Proposition 8

Proof. When λ > λ̄ and θ = H, in the region f < f†, the issuance function is given by

gH(f)f =
(ρ− r) (j′L(f)− j′H(f))

−p′H (f)
.
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As γ > 1 and ϕ > 1, we have that

lim
f→0

j′L(f) + 1 =
η

r + η + ξ
,

lim
f→0

(
j′L(f)− j′H(f)

)
=

η

ρ+ λ+ ξ

r + ξ

r + η + ξ
,

which are strictly positive if η > 0. Therefore, limf→0(gH(f)f) is strictly positive as long as
p′H(0) > −∞, which requires that γ ≥ 2 and ϕ ≥ 2.

B Details of Firm Value Decomposition in Subsection 3.2

We derive the equations under λ > λ̄ . The case λ ≤ λ̄ relates to f† = 0. For any given F0, we
know

Ft = F0e
−ξt.

The joint value and the value of long-term debt are

J0
H(X0, F0) = E0

[∫ τb∧τλ

0
e−ρt

{
Xt − (r + ξ)Ft + (ρ− r)Dt−

}
dt+ e−ρτb∧τλJ0

L(Xτλ , Fτλ)1τλ<τb

]

F0P
0
H(X0, F0) = E0

[∫ τb∧τλ

0
e−rt(r + ξ)Ftdt+ e−rτb∧τλP 0

L(Xτλ , Fτλ)Fτλ1τλ<τb

]
J0
L(X0, Ft) = E0

[∫ τb

0
e−ρt

{
Xt − (r + ξ)Ft + (ρ− r)Dt−

}
dt

]

F0P
0
L(X0, F0) = E0

[∫ τb

0
e−rt(r + ξ)Ftdt

]
.

Let us define Wθ = Jθ + FP 0
θ as the firm value, then

WL(Xτλ , Fτλ) = Eτλ

[∫ τb

τλ

e−ρ(t−τλ)Xtdt

]
+ Eτλ

[∫ τb

τλ

e−ρ(t−τλ)(ρ− r)Dt−dt

]

+ Eτλ

[∫ τb

τλ

(
e−r(t−τλ) − e−ρ(t−τλ)

)
(r + ξ)Ftdt

]
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and

WH(X0, F0) = E0

[∫ τb∧τλ

0
e−ρtXtdt+ e−ρτb∧τλWL(Xτλ , Fτλ)1τλ<τb

]
+ E0

[(
e−rτb∧τλ − e−ρτb∧τλ

)
P 0
L(Xτλ , Fτλ)Fτλ1τλ<τb

]
+ E0

[∫ τb∧τλ

0
e−ρt(ρ− r)Dt−dt

]
+ E0

[∫ τb∧τλ

0

(
e−rt − e−ρt

)
(r + ξ)Ftdt

]
.

From here, we can rewrite firm value as

WH(X0, F0) = E0

[∫ ∞

0
e−ρtXtdt

]
︸ ︷︷ ︸

unlevered firm value

+E0

[∫ τb

0

(
e−rt − e−ρt

)
(r + ξ)Ftdt

]
︸ ︷︷ ︸

benefit LT debt

+E0

[∫ τb

0
e−ρt(ρ− r)Dt−dt

]
︸ ︷︷ ︸

benefit ST debt

− E0

[∫ ∞

τb

e−ρtXtdt

]
︸ ︷︷ ︸

bankruptcy cost

.

The remainder of the proof solves term one by one.

• Unlevered firm value

E0

[∫ ∞

0
e−ρtXtdt

]
=

X0

ρ+ λ− µH
+

X0

ρ+ λ− µH

λ

ρ+ η − µL
.

• Benefit from long-term debt

E0

[∫ τb

0

(
e−rt − e−ρt

)
(r + ξ)Ftdt

]
= (r + ξ)F0E0

[∫ τb

0

(
e−(r+ξ)t − e−(ρ+ξ)t

)
dt

]
= F0

(
ρ− r

ρ+ ξ
+
r + ξ

ρ+ ξ
E0

[
e−(ρ+ξ)τb

]
− E0

[
e−(r+ξ)τb

])
.

Define φθ(f |α) = E
[
e−(α+ξ)(τb−t)|ft = f

]
, we can derive the following HJB equations

(α+ ξ + η)φL(f |α) = η − (µL + ξ − σ2)fφ′
L(f |α) +

1

2
σ2f2φ

′′
L(f |α) f ∈ [0, f bL)

(α+ ξ + λ)φH(f |α) = λφL(f |α)− (µH + ξ − σ2)fφ
′
H(f |α) +

1

2
σ2f2φ

′′
H(f |α) f ∈ [0, f†]

(α+ ξ + λ)φH(f |α) = λ− (µH + ξ − σ2)fφ
′
H(f |α) +

1

2
σ2f2φ

′′
H(f |α) f ∈ [f†, f

b
H).
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The boundary conditions include value matching and smooth pasting at f†. In addition, we
need for θ ∈ {H,L}, φθ(0|α) is finite and φθ(f

b
θ |α) = 1.

• Benefit from short-term debt. Let

sθ(f) =
1

X0
E0

[∫ τb

0
e−ρt(ρ− r)Dt−dt

]
.

We can derive the following HJB equations after taking into account the optimal short-term
debt issuance:

(ρ+ η − µL) sL(f) = (ρ− r) jL(f)− (µL + ξ)fs
′
L(f) +

1

2
σ2f2s

′′
L(f) f ∈ [0, f bL)

(ρ+ λ− µH) sH(f) = (ρ− r) jL(f) + λsL(f)− (µH + ξ)fs
′
H(f) +

1

2
σ2f2s

′′
H(f) f ∈ [0, f†]

(ρ+ λ− µH) sH(f) = (ρ− r) jH(f)− (µH + ξ)fs
′
H(f) +

1

2
σ2f2s

′′
H(f) f ∈ [f†, f

b
H).

The boundary conditions include value matching and smooth pasting at f†. In addition, we
need for θ ∈ {H,L}, sθ(0) is finite and sθ(f

b
θ ) = 0.

• Bankruptcy cost. Define

cθ(f) =
1

X0
E0

[∫ ∞

τb

e−ρtXtdt

]
.

We can derive the following HJB equations

(ρ+ η − µL) cL(f) = 0− (µL + ξ)fs
′
L(f) +

1

2
σ2f2s

′′
L(f) f ∈ [0, f bL)

(ρ+ λ− µH) cH(f) = λcL(f)− (µH + ξ)fc
′
H(f) +

1

2
σ2f2c

′′
H(f) f ∈ [0, f†]

(ρ+ λ− µH) cH(f) =
λ

ρ+ η − µL
− (µH + ξ)fc

′
H(f) +

1

2
σ2f2c

′′
H(f) f ∈ [f†, f

b
H).

The boundary conditions include value matching and smooth pasting at f†. In addition, we
need for θ ∈ {H,L}, cθ(0) is finite and

cH(f
b
H) =

1

ρ+ λ− µH

(
1 +

λ

ρ+ η − µL

)
cL(f

b
L) =

1

ρ+ η − µL
.



Internet Appendix for “Debt Maturity Management”

Yunzhi Hu Felipe Varas Chao Ying

This Internet Appendix contains additional analysis to accompany the manuscript. Section A
provides the remaining proofs for the analysis in Section 3, including all technical lemmas. Section
B provides the details for Section 4.

A Remaining proofs

Maximum Principle

Our proofs use repeatedly the Maximum Principle for differential equations. Theorem 3 and 4
from Chapter 1 in Protter and Weinberger (1967) are particularly useful, and we state them below.

Theorem 1 (Theorem 3 in Protter and Weinberger (1967)). If u(x) satisfies the differential in-
equality

u′′ + g(x)u′ + h(x)u ≥ 0 (A.20)

in an interval (0, b) with h(x) ≤ 0, if g and h are bounded on every closed subinterval, and if u
assumes a nonnegative maximum value M at an interior point c, then u(x) ≡M .

Theorem 2 (Theorem 4 in Protter and Weinberger (1967)). Suppose that u is a nonconstant
solution of the differential inequality (A.20) having one-sided derivatives at a and b, that h(x) ≤ 0,
and that g and h are bounded on every closed subinterval of (a, b). If u has a nonnegative maximum
at a and if the function g(x) + (x − a)h(x) is bounded from below at x = a, then u′(a) > 0. If u
has a nonnegative maximum at b and if g(x) − (b − x)h(x) is bounded from above at x = b, then
u′(b) > 0.

Corollary 2. If u satisfies (A.20) in an interval (a, b) with h(x) ≤ 0, if u is continuous on [a, b],
and if u (a) ≤ 0, u (b) ≤ 0, then u (x) < 0 in (a, b) unless u ≡ 0.



A.1 Proofs of Auxiliary Lemmas

Proof of Lemma 1

Proof. The proof of Proposition 2 makes it clear that the condition λ > λ̄ guarantees that

(ρ+ λ− r) j0L (0) > (ρ− r) j0H (0) .

This inequality is satisfied only if

ρ+ λ− r

ρ− r
>
ρ+ λ+ η − µL
ρ+ λ− µH

.

Combining terms, we can write this as the following quadratic inequality

λ2 + (ρ− µH)λ− (ρ− r) (µH − µL + η) > 0.

The left hand side is positive if and only if λ is greater than the unique positive root of the quadratic
equation for λ̄

λ̄2 + (ρ− µH) λ̄− (ρ− r) (µH − µL + η) = 0,

which is given by (A.5).

Proof of Lemma 2

Proof. Define a ≡ 1 + λ
ρ−r . The goal is to show ajL − jH > 0 for f < f†, and vice versa. Let us

introduce two operators: for a function u let,

L0†u ≡ 1

2
σ2f2u′′ − (µH + ξ) fu′ − (ρ+ λ− µH)u

L†bu ≡ 1

2
σ2f2u′′ − (µH + ξ) fu′ − (r + λ− µH)u.

The HJB in state θ = H can be written as

L0†j0H + 1− (r + ξ) f + (ρ+ λ− r) j0L = 0, f ∈ (0, f†)

L†bj0H + 1− (r + ξ) f = 0, f ∈ (f†, f
b
H).
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Similarly, the HJB in state θ = L can be written as

L0†aj0L + a(µH − µL)fj
0′
L + a (ρ+ λ− (r + η) + µL − µH) j

0
L + a (1− (r + ξ) f) = 0

L†baj0L + a(µH − µL)fj
0′
L − a (µH − µL + η − λ) j0L + a (1− (r + ξ) f) = 0.

Therefore, we have

L0† (aj0L − j0H
)
+H(f) = 0

L†b (aj0L − j0H
)
+H(f) = 0,

where the function H(f) defined as

H(f) ≡ a(µH − µL)fj
0′
L − a (µH − µL + η − λ) j0L + (a− 1) (1− (r + ξ) f) ,

and

H ′′(f) =
[
(µH − µL)a

fj0
′′′
L

j0
′′
L

+ (µH − µL)a+ a (λ− η)
]
j0

′′
L

=
[
(µH − µL)(γ − 1) + λ− η

]
aj0

′′
L . (A.21)

We need to distinguish two cases. If λ ≥ η − (µH − µL)(γ − 1), H ′′(f) ≥ 0, which implies H(f)

is convex and the maximum of H (f) on [0, f bL] is attained on the boundary 0 or f bL. Evaluating
H(f) at the two boundaries and using the hypothesis λ > λ̄, we have

(ρ+ λ− µH) a− (ρ+ λ− η − µL) > 0,

from Lemma 1. Then, we get

H(0) = −a (µH − µL + η − λ)
1

r + η − µL
+ (a− 1)

=
1

r + η − µL
((ρ+ λ− µH) a− (ρ+ λ− η − µL)) > 0,

H(f bL) = (a− 1)
(
1− (r + ξ) f bL

)
< 0.

Therefore, there exists a unique f ′ such thatH(f) ≥ 0 on [0, f ′] andH(f) ≤ 0 on [f ′, f bL]. Depending
on whether f ′ < f† or not, we need to consider two cases.

• Case 1: f ′ > f†.

IA2



– On f ∈ [0, f†], we know H (f) > 0 and L0† (aj0L − j0H
)
< 0 on [0, f†]. Using Theorem 1,

we know that aj0L(f)− j0H(f) cannot have a negative interior minimum on [0, f†]. Given
aj0L(0)− j0H(0) > 0, we know that aj0L(f)− j0H(f) > 0, ∀f ∈ [0, f†). Moreover, Theorem
2 and Corollary 2 imply aj0′L (f†)− j0

′
H (f†) < 0.

– On f ∈ [f ′, f bL], we know H (f) ≤ 0 and L†b (aj0L − j0H
)
≥ 0. Using Theorem 1, we

know that aj0L(f) − j0H(f) cannot have a nonnegative interior maximum. Given that
aj0L

(
f bL
)
− j0H

(
f bL
)
< 0, aj0L (f)− j0H (f) ≤ 0, ∀f ∈

[
f ′, f bL

]
.

– On f ∈ [f†, f
′]. Suppose there exists a f ′′ ∈ (f†, f

′) such that aj0L (f ′′) − j0H (f ′′) > 0.
Given that aj0L (f†)− j0H (f†) = 0 and aj0

′
L (f†)− j0

′
H (f†) < 0, it must be that aj0L (f)−

j0H (f) has a nonpositive interior minimum on [f†, f
′′]. Meanwhile, from L†b(aj0L (f) −

j0H (f)) ≤ 0 for f ∈ (f†, f
′′), we know from Theorem 1 that aj0L (f)− j0H (f) cannot have

a nonpositive interior minimum on (f†, f
′′), which constitutes a contradiction.

• Case 2: f ′ ≤ f†.

– On f ∈ [f†, f
b
L], we know that H (f) < 0 and L†b (aj0L − j0H

)
≤ 0. From Theorem 1 and

2, we know aj0L (f)− j0H (f) ≤ 0 and aj0
′
L (f†)− j0

′
H (f†) ≤ 0.

– On f ∈ [f ′, f†], L0† (aj0L − j0H
)
≥ 0 so that aj0L (f) − j0H (f) cannot have a nonnegative

interior maximum. Together with aj0′L (f†)−j0
′
H (f†) ≤ 0, this shows aj0L (f)−j0H (f) ≥ 0.

– On f ∈ [0, f ′], we know that H (f) > 0 and L0† (aj0L − j0H
)
< 0 on [0, f†]. Using

Theorem 1, we know that aj0L(f)− j0H(f) cannot have a negative interior minimum on
[0, f ′]. Given aj0L(0)− j0H(0) > 0, we know that aj0L(f)− j0H(f) > 0, ∀f ∈ [0, f ′).

Proof of Lemma 3

Proof. Let û = j
′
H (f) + 1 and the goal is to show û (f) ≥ 0, ∀f ∈

[
0, f bH

]
. We know from (A.36)

that û (0) ≥ 0 and (A.32) that û
(
f bH
)
= 1. Moreover, û satisfies

1

2
σ2f2û′′ −

(
µH + ξ − σ2

)
fû′ − (ρ+ λ+ ξ) û = − (ρ+ λ− r) (j

′
L + 1) < 0, f ∈ [0, f†]

1

2
σ2f2û′′ −

(
µH + ξ − σ2

)
fû′ − (r + λ+ ξ) û = −λ < 0 f ∈ [f†, f

b
H ].

By Theorem 1, we know û (f) cannot admit a nonpositive interior minimum on
[
0, f bH

]
, which rules

out the possibility that û (f) < 0.
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Proof of Lemma 4

Proof. For any f ≤ 1
r+ξ , there is a naive policy that the equity holder does not issue any long-term

debt, in which case the scaled net cash flow rate becomes 1− (r + ξ) f +(ρ+ λ− y) d > 0. In other
words, the naive policy generates positive cash flow to the borrower, so that it is never optimal to
default. Therefore, it must be that f bH > 1

r+ξ . Plugging (A.31) and (A.32) into the HJB equation
for jH(f), we get j′′H

(
f bH
)

whenever f bH > 1
r+ξ .

Next, let us turn to prove that j′′H (0) ≥ 0. Let us define u ≡ j
′
H and differentiate the HJB

equation once

1

2
σ2f2u′′ −

(
µH + ξ − σ2

)
fu′ − (ρ+ λ+ ξ)u = (r + ξ)− (ρ+ λ− r) j

′
L.

Moreover, let z be the solution to

1

2
σ2f2z′′ −

(
µH + ξ − σ2

)
fz′ − (ρ+ λ+ ξ) z = (r + ξ)− (ρ+ λ− r) j

′
L(0)

with boundary conditions

lim
f↓0

z(f) <∞

z(f†) = u(f†) = j
′
H(f†).

The solution is

z(f) = − r + ξ

ρ+ λ+ ξ
+

(ρ+ λ− r) j
′
L(0)

ρ+ λ+ ξ
+

(
j
′
H(f†) +

r + ξ

ρ+ λ+ ξ
−

(ρ+ λ− r) j
′
L(0)

ρ+ λ+ ξ

)(
fω1

f†

)ω1

,

where

ω1 =

(
µH + ξ − 1

2σ
2
)
+

√(
µH + ξ − 1

2σ
2
)2

+ 2σ2 (ρ+ λ+ ξ)

σ2
> 0.

Let δ(f) = z − u. It is easily verified that δ(0) = 0 and δ(f†) = 0. Moreover, δ satisfies

1

2
σ2f2δ′′ −

(
µH + ξ − σ2

)
fδ′ − (ρ+ λ+ ξ) δ = (ρ+ λ− r) (j

′
L(f)− j

′
L(0)) ≥ 0.

By Theorem 1, δ cannot have an interior nonnegative maximum, and the maximum is attained at
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f = 0. Theorem 2 further implies δ′(0) < 0 so u′ (0) > z′ (0). Finally, we know that

z′(f) = ω1

(
j
′
H(f†) +

r + ξ

ρ+ λ+ ξ
−

(ρ+ λ− r) j
′
L(0)

ρ+ λ+ ξ

)
f−ω1
† fω1−1 = ω1

(
j
′
H(f†) + 1

)
f−ω1
† fω1−1,

which implies z′(f) ≥ 0 given that j′H(f†) ≥ −1. Therefore, u′ (0) = j
′′
H (0) > 0.

Proof of Lemma 5

Proof. We differentiate the HJB (A.4) once and take the difference between the left limit f†− and
right limit f†+

1

2
σ2f2(j

′′′
H(f†+)− j

′′′′
H (f†−)) = (ρ− r)

[
aj

′
L(f†)− j

′
H(f†)

]
,

where a ≡ 1 + λ
ρ−r The proof of Proposition 2 shows aj′L(f†) − j

′
H(f†) < 0 so that j′′′′H (f†−) >

j
′′′
H(f†+).

A.2 Detailed Solutions of the Joint Value j0θ (f)

Proposition 12 (Value function). In state θ = L, the joint continuation value is

j0L (f) =
1

r + η − µL
− r + ξ

r + η + ξ
f︸ ︷︷ ︸

no default value

+
1

γ − 1

1

r + η − µL

(
f

f bL

)γ
︸ ︷︷ ︸

default option

, (A.22)

where γ > 1 is provided in equation (A.27), and the default boundary f bL in (A.28).
In state θ = H:

• If λ > λ̄, the joint continuation value is

j0H(f) =

u0(f) +
(
j0H(f†)− u0(f†)

) ( f
f†

)ϕ
f ∈ [0, f†)

u1(f) +
(
j0H(f†)− u1(f†)

)
h0(f)− u1(f

b
H)h1(f) f ∈

[
f†, f

b
H

]
,

(A.23)

IA5



where ϕ > 1 is provided in (A.35), and

u0(f) =
1

ρ+ λ− µH

(
1 +

ρ+ λ− r

r + η − µL

)
− r + ξ

ρ+ λ+ ξ

(
1 +

ρ+ λ− r

r + η + ξ

)
f︸ ︷︷ ︸

no default value

(A.24)

+ δ
1

γ − 1

1

r + η − µL

(
f

f bL

)γ
︸ ︷︷ ︸

default option in low state

u1(f) =
1

r + λ− µH
− r + ξ

r + λ+ ξ
f︸ ︷︷ ︸

no default value

. (A.25)

The discount factors δ, h0(·), and h1(·) are defined in equations (A.37) and (A.40). The
boundaries f† and f bH are determined using the boundary conditions equation (A.30) and
equation(A.32).

• If λ ≤ λ̄, the joint continuation value is

j0H(f) =
1

r + λ− µH
− r + ξ

r + λ+ ξ
f︸ ︷︷ ︸

no default value

+
r + ξ

r + λ+ ξ

f bH
β1

(
f

f bH

)β1
︸ ︷︷ ︸

default option

(A.26)

where β1 > 1 is provided in equation (A.38), and the default boundary f bH in (A.45).

Solution to the HJB equation in the low state. Equation (11) is a second-order ODE, and
a standard solution takes the form

j0L(f) = A0 −A1f +A2f
γ1 +A3f

γ2 .

Plugging into the ODE, we can get

A0 =
1

r + η − µL

A1 =
r + ξ

r + η + ξ

γ1 =
µL + ξ + 1

2σ
2 +

√(
µL + ξ + 1

2σ
2
)2

+ 2σ2 (r + η − µL)

σ2
> 1

γ2 =
µL + ξ + 1

2σ
2 −

√(
µL + ξ + 1

2σ
2
)2

+ 2σ2 (r + η − µL)

σ2
< 0.

(A.27)
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The condition limf→0 j
0
L(f) < ∞ implies A3 = 0. We define γ ≡ γ1. Combining with value-

matching and smooth-pasting condition, we get the default boundary is

f bL =
γ

γ − 1

r + η + ξ(
r + η − µL

)
(r + ξ)

. (A.28)

Therefore, the joint value at θ = L is

j0L(f) =
1

r + η − µL
− r + ξ

r + η + ξ
f +

r + ξ

r + η + ξ

f bL
γ

(
f

f bL

)γ
.

Solution to the HJB equation in the high state for f† > 0. The value function satisfies
equation (A.4) together with the boundary conditions

j0H(f†−) = j0H(f†+) (A.29)

j0
′
H(f†−) = j0

′
H(f†+) (A.30)

j0H(f
b
H) = 0 (A.31)

j0
′
H(f

b
H) = 0 (A.32)

lim
f→0

j0H(f) <∞ (A.33)

j0H (f†) =
ρ+ λ− r

ρ− r
j0L (f†) . (A.34)

First, we consider the solution for f ∈ [0, f†], in which region the value function satisfies the
equation

(ρ+ λ− µH) j
0
H(f) = 1− (r + ξ) f + (ρ+ λ− r) j0L(f)− (µH + ξ) fj0

′
H(f) +

1

2
σ2f2j0

′′
H (f) .

The unique solution to this ODE satisfying condition (A.33) takes the form

j0H (f) = u0(f) +Bfϕ,

where the coefficient ϕ is given by

ϕ =
µH + ξ + 1

2σ
2 +

√(
µH + ξ + 1

2σ
2
)2

+ 2σ2 (ρ+ λ− µH)

σ2
> 1, (A.35)
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and a particular solution u0 is given by

u0(f) =
1

ρ+ λ− µH

(
1 +

ρ+ λ− r

r + η − µL

)
− r + ξ

ρ+ λ+ ξ

(
1 +

ρ+ λ− r

r + η + ξ

)
f︸ ︷︷ ︸

no default value

+ δ
1

γ − 1

1

r + η − µL

(
f

f bL

)γ
︸ ︷︷ ︸

default option in low state

(A.36)

where the discount factor δ is

δ ≡ ρ+ λ− r

ρ+ λ− r − η + (µH − µL)(γ − 1)
∈ (0, 1). (A.37)

From the Feynman-Kac formula, we know that the solution to the particular solution admits the
following stochastic representation:

u0(f) = E0

[∫ ∞

0
e−(ρ+λ−µH)t

(
1− (r + ξ) f̃t + (ρ+ λ− r) j0L(f̃t)

)
dt

]
where f̃t corresponds to the process

df̃t = −(µH + ξ)ftdt− σftdB̃t, f̃0 = f

for some Brownian motion B̃t. Equation (A.36) follows by Girsanov’s theorem after a change of
measure using the Radon-Nikodym derivative e−µH t(Xt/X0).

The coefficient B is pinned down from the value at j0H (f†)

B = f−ϕ†
(
j0H(f†)− u0(f†)

)
so that

j0H(f) = u0(f) +
(
j0H(f†)− u0(f†)

)( f
f†

)ϕ
, ∀f ∈ [0, f†],

where j0H (f†) = ρ+λ−r
ρ−r j0L (f†). The solution on the interval

[
f†, f

b
H

]
can be obtained in a similar

way. In this interval, the value function satisfies the equation

(r + λ− µH) j
0
H(f) = 1− (r + ξ) f +DHj0H(f).
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The homogeneous equation
(r + λ− µH)φ = DHφ

has two solution fβ1 and fβ2 , where

β1 =
µH + ξ + 1

2σ
2 +

√(
µH + ξ + 1

2σ
2
)2

+ 2σ2 (r + λ− µH)

σ2
> 1

β2 =
µH + ξ + 1

2σ
2 −

√(
µH + ξ + 1

2σ
2
)2

+ 2σ2 (r + λ− µH)

σ2
< 0.

(A.38)

Hence, the value function takes the form

j0H (f) = u1(f) +D1f
β1 +D2f

β2 .

As before, the particular solution

u1(f) =
1

r + λ− µH
− r + ξ

r + λ+ ξ
f (A.39)

admits the representation

u1(f) = E0

[∫ ∞

0
e−(r+λ−µH)t

(
1− (r + ξ)f̃t

)
dt

]
,

which, after an appropriate change of measure, can be written as equation (A.39). Finally, by
combining equations (A.29) and (A.31), we get

D1 =
j0H(f†) + u1(f

b
H)
(
f†
fbH

)β2
− u1(f†)

(f bH)
β1

[(
f†
fbH

)β1
−
(
f†
fbH

)β2]
D2 = (f bH)

−β2
(
−u1(f bH)−D1(f

b
H)

β1
)
.

It follows that the solution to the value function on this interval is given by

j0H(f) = u1(f) +
(
j0H(f†)− u1(f†)

)
h0

(
f, f†, f

b
H

)
− u1(f

b
H)h1

(
f, f†, f

b
H

)
,
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where

h0

(
f
∣∣f†, f bH) =

(
f
fbH

)β1
−
(
f
fbH

)β2
(
f†
fbH

)β1
−
(
f†
fbH

)β2
h1

(
f
∣∣f†, f bH) =

(
f†
fbH

)β2 ( f
fbH

)β1
−
(
f†
fbH

)β1 ( f
fbH

)β2
(
f†
fbH

)β2
−
(
f†
fbH

)β1 .

(A.40)

It remains to find equations that solve
{
f†, f

b
H

}
, which come from the smooth pasting conditions

(A.30) and (A.32). These two conditions lead to the two-variable, non-linear equation system below

u1(f
b
H)

 β2

(
f†
fbH

)β1
(
f†
fbH

)β1
−
(
f†
fbH

)β2 −
β1

(
f†
fbH

)β2
(
f†
fbH

)β1
−
(
f†
fbH

)β2
 = u′1(f

b
H)f

b
H +

(
j0H(f†)− u1(f†)

) β1 − β2(
f†
fbH

)β1
−
(
f†
fbH

)β2
(A.41)(

u′0(f†)− u′1(f†)
)
f† + ϕ

(
j0H(f†)− u0(f†)

)
=

u1(f
b
H)

β1 − β2(
f†
fbH

)β1
−
(
f†
fbH

)β2
(
f†

f bH

)β1+β2
+
(
j0H(f†)− u1(f†)

)β1 ( f†
fbH

)β1
− β2

(
f†
fbH

)β2
(
f†
fbH

)β1
−
(
f†
fbH

)β2 . (A.42)

Solution to the HJB equation in the high state if λ ≤ λ̄. The value function satisfies

(r + λ− µH) j
0
H(f) = 1− (r + ξ) f − (µH + ξ) fj0

′
H (f) +

1

2
σ2f2j0

′′
H (f) . (A.43)

We guess the solution of the value function takes the form

j0H(f) = D0
0 −D0

1f +D0
2f

β1 +D0
3f

β2 .

Plugging into equation (A.43), we can get

D0
0 =

1

r + λ− µH
,

D0
1 =

r + ξ

r + λ+ ξ
.
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The condition lim
f→0

j0H(f) <∞, we know D0
3 = 0. Since j0H(f bH) = 0 and j0

′
H(f

b
H) = 0, we know

j0H(f) =
1

r + λ− µH
− r + ξ

r + λ+ ξ
f +

r + ξ

r + λ+ ξ

f bH
β1

(
f

f bH

)β1
, (A.44)

where
f bH =

β1
β1 − 1

r + λ+ ξ

(r + ξ) (r + λ− µH)
. (A.45)

A.3 Detailed Analysis of Section 3.4

Proof of Proposition 9

The first step in the analysis is to derive the limit of the value function. This is given in the
following result.

Proposition 13 (Limit value function). Suppose that µL + ξ < 0 and µH + ξ > 0. Consider the
case when λ > λ̄, where λ̄ is given in equation (A.5). Let

γ ≡ r + η − µL
−(ξ + µL)

> 1

ψ ≡ r + λ− µH
ξ + µH

> 0.

In the limit when σ2 → 0, the value function converges to

jL(f) =
1

r + η − µL
− r + ξ

r + η + ξ
f +

1

γ − 1

1

r + η − µL

(
f

f bL

)γ

jH(f) =

u0(f) f ∈ [0, f†]

u1(f) +
(
u0(f†)− u1(f†)

) ( f
f†

)−ψ
f ∈

(
f†, f

b
H

]
,

where u0(f) and u1(f) are given in equations (A.36) and (A.39). The default boundary in the low
state is f bL = 1

r+ξ . In the high state, the threshold f† solves

jL(f†) =
ρ− r

ρ+ λ− r
u0(f†)

where the functions u0(f) and u1(f) are given in equations (A.36) and (A.39). The default boundary
solves

u1(f
b
H) +

(
u0(f†)− u1(f†)

)( f†

f bH

)ψ
= 0.
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Proof. Under the assumption that µL + ξ < 0, the default boundary becomes

f bL =
1

r + ξ
.

Using L’Hôpital rule, and noticing that
√
x2 = ±|x|, we get

lim
σ2→0

γ =
1

2
+

1

2

[
(µL + ξ)2

]−1/2
[(µL + ξ) + 2 (r + η − µL)]

=
1

2
− 1

2
(µL + ξ)−1 [(µL + ξ) + 2 (r + η − µL)]

= −r + η − µL
ξ + µL

Similarly, under the assumption that µH + ξ > 0, we get that

lim
σ→0

ϕ = ∞

lim
σ→0

β1 = ∞

lim
σ→0

β2 = −r + λ− µH
µH + ξ

= −ψ.

The smooth pasting condition for f bH can be written as

u1(f
b
H)

 β2
β1

(
f†
fbH

)β1
(
f†
fbH

)β1
−
(
f†
fbH

)β2 −

(
f†
fbH

)β2
(
f†
fbH

)β1
−
(
f†
fbH

)β2
 =

1

β1
u′1(f

b
H)f

b
H+
(
jH(f†)−u1(f†)

) 1− β2
β1(

f†
fbH

)β1
−
(
f†
fbH

)β2 .
In the limit as σ2 → 0, this equation simplifies to

u1(f
b
H) +

(
jH(f†)− u1(f†)

)( f†

f bH

)ψ
= 0

Similarly, we can write the smooth pasting condition at f† as

1

β1

(
u′0(f†)− u′1(f†)

)
f† +

ϕ

β1

(
jH(f†)− u0(f†)

)
=

u1(f
b
H)

1− β2
β1(

f†
fbH

)β1
−
(
f†
fbH

)β2
(
f†

f bH

)β1+β2
+
(
jH(f†)− u1(f†)

)( f†
fbH

)β1
− β2

β1

(
f†
fbH

)β2
(
f†
fbH

)β1
−
(
f†
fbH

)β2 ,
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and taking the limit we get
jH(f†) = u0(f†)

Substituting in the smooth pasting condition for f bH , we get the following equation for f bH

u1(f
b
H) +

(
u0(f†)− u1(f†)

)( f†

f bH

)ψ
= 0,

Substituting the solution for jH(f†) in indifference condition

jL(f†) =
ρ− r

ρ+ λ− r
jH(f†),

we obtain the following equation for f†:

1

r + η − µL

(
1− (ρ− r)(ρ+ λ+ η − µL)

(ρ+ λ− µH)(ρ+ λ− r)

)
−
(
1− (ρ− r)(ρ+ λ+ η + ξ)

(ρ+ λ− r)(ρ+ λ+ ξ)

)
1

r + η + ξ

(
f†

f bL

)
+

λ+ (µH − µL)(γ − 1)− η

ρ+ λ− r + (µH − µL)(γ − 1)− η

1

γ − 1

1

r + η − µL

(
f†

f bL

)γ
= 0

Finally, from the limit coefficients (ϕ, β1, β2), we obtain that the value function in the H state
converges to

jH(f) =

u0(f) f ∈ [0, f†]

u1(f) +
(
u0(f†)− u1(f†)

) ( f
f†

)−ψ
f ∈

(
f†, f

b
H

]
,

Substituting the previous expressions on the equilibrium conditions determining the price, pθ =
−j′θ, we get

Proposition 14 (Limit price of long-term debt). Under the assumptions in Proposition 13, the
limit price of long-term debt when σ2 → 0 is

pL(f) =
r + ξ

r + η + ξ

[
1−

(
f

f bL

)γ−1
]

(A.46)

pH(f) =


r+ξ

r+η+ξ

[
1 + η

ρ+λ+ξ − δ
(
f
fbL

)γ−1
]

f ∈ [0, f†]

r+ξ
r+λ+ξ + ψ

(
u0(f†)− u1(f†)

)
1
f†

(
f
f†

)−(ψ+1)
f ∈

(
f†, f

b
H

]
,

(A.47)
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where, as before, the constant δ is given by

δ =
ρ+ λ− r

ρ+ λ− r + (µH − µL)(γ − 1)− η
∈ (0, 1).

Proof. From the solution for the value function, we can obtain the price of the long-term debt. The
price of the long-term bond is

pL (f) =
r + ξ

r + η + ξ

[
1−

(
f

f bL

)γ−1
]

(A.48)

and

pH(f) =


r+ξ

r+η+ξ

[
1 + η

ρ+λ+ξ − δ
(
f
fbL

)γ−1
]

f ∈ [0, f†]

r+ξ
r+λ+ξ + ψ

(
u0(f†)− u1(f†)

)
1
f†

(
f
f†

)−(ψ+1)
f ∈

(
f†, f

b
H

]
,

Having computed the price, we obtain the issuance function by substituting pL, pH , fp′L, fp′H .

gH(f) =
−(ξ + µL)(ρ− r)

δ

[
(1− δ)

r + η + ξ
+

η

(r + η + ξ)(ρ+ λ+ ξ)

(
f

f bL

)−(γ−1)
]
.

We can substitute δ and γ to express gH(f) exclusively in terms of the primitive parameters

gH(f) =
ρ− r

ρ+ λ− r

[
η(ξ + µH) + (µH − µL)(r + ξ)

r + η + ξ

+η

(
(ξ + µH)(r + η + ξ)− (ξ + µL)(ρ+ λ+ ξ)

(r + η + ξ)(ρ+ λ+ ξ)

)(
f

f bL

) r+η+ξ
ξ+µL

]

The equation for f† reduces to

λ(ρ+ λ− µH)− (ρ− r)(µH − µL + η)

(r + η − µL)(ρ+ λ− µH)(ρ+ λ− r)
− λ(ρ+ λ+ ξ)− (ρ− r)η

(ρ+ λ− r)(ρ+ λ+ ξ)(r + η + ξ)

(
f†

f bL

)
+

λ+ (µH − µL)(γ − 1)− η

ρ+ λ− r + (µH − µL)(γ − 1)− η

1

γ − 1

1

r + η − µL

(
f†

f bL

)γ
= 0.

Comparative Statics gH : The following comparative statics follow immediately: for any f ∈
(0, f†), gH(f) is decreasing in λ and increasing in ρ, η and µH . The effect of µL is more difficult to
determine. Differentiating the function we get
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∂gH(f)

∂µL
=

ρ− r

ρ+ λ− r

[
− r + ξ

r + η + ξ

(
f

f bL

)γ−1

− η

r + η + ξ

+
η

ξ + µL

(
(γ − 1)(ξ + µH)

ρ+ λ+ ξ
+ 1

)
log

(
f

f bL

)](
f

f bL

)−(γ−1)

The sign of the derivative depends on the sign of

Ψ(f) ≡ − r + ξ

r + η + ξ

(
f

f bL

)γ−1

− η

r + η + ξ
− η

−(ξ + µL)

(
(γ − 1)(ξ + µH)

ρ+ λ+ ξ
+ 1

)
log

(
f

f bL

)
,

the function Ψ(f) is decreasing, with Ψ(f bL) < 0. For any η > 0, the limit when f goes to zero
is Ψ(f) → ∞. Thus, there is f̃ such that Ψ(f) > 0 on [0, f̃) and Ψ(f) < 0 on (f̃, f bL]. If f† > f̃ ,
then gH is increasing in µL for f < f̃ and decreasing for f > f̃ . When η = 0, the issuance function
reduces to gH(f) = (ρ−r)(µH−µL)

ρ+λ−r , which is decreasing in µL.

Proof of Proposition 10

Sample Path: The ODE describing the evolution of ft on (0, f†) can be solved in closed form.
Let

a0 =
−(ξ + µL)(ρ− r)(1− δ)

(r + η + ξ)δ
− (ξ + µH)

a1 =
−(ξ + µL)

δ

(ρ− r)η

(r + η + ξ)(ρ+ λ+ ξ)
f bL

γ−1
,

so for f < f†, ft solves
ḟt = a0ft + a1f

2−γ
t .

This coefficients can be written as

a1
a0

= − η

ρ+ λ+ ξ

[(
1 +

ξ + µH
−(ξ + µL)

r + η + ξ

ρ− r

)
δ − 1

]−1

︸ ︷︷ ︸
≡κ

f bL
(γ−1)

a0(γ − 1) = − (r + η + ξ)

 ξ + µH
−(ξ + µL)

−
(ρ− r)

(
(µH − µL)(γ − 1)− η

)
(r + η + ξ)(ρ+ λ− r)


︸ ︷︷ ︸

≡ν

.
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Substituting γ and simplifying terms, we get

ν =
(r + η + ξ)(ρ− r)

ρ+ λ− r

[
ξ + µH

−(ξ + µL)

λ

ρ− r
− r + ξ

r + η + ξ

]
,

which is positive only if
ξ + µH

−(ξ + µL)

λ

ρ− r
>

r + ξ

r + η + ξ
.

In addition, κ ∝ ν, so it is positive only if ν is positive as well.
Given these definitions, we can can write

ḟt
ft

= − ν

γ − 1

[
1− κ

(
ft

f bL

)1−γ
]
.

Moreover, this equation can be solved in closed form. Letting zt = log ft, we get the equation

żt = − ν

γ − 1

[
1− κf bL

γ−1
e(1−γ)zt

]
.

The general solution to these equation is given provided in (Zaitsev and Polyanin, 2002, p. 162),
and is given by

z =
1

γ − 1
log
(
Ce−νt + κf bL

γ−1
)
.

From here we get that

f =
[
Ce−νt + κf bL

γ−1
] 1

γ−1
.

The integration constant is determined by the initial condition

C = fγ−1
0 − κf bL

γ−1
,

so it follows that
ft =

[
fγ−1
0 e−νt + κf bL

γ−1 (
1− e−νt

)] 1
γ−1

.

Comparative Statics Path Let start considering the speed of adjustment ν

• ξ:

∂ν

∂ξ
=
λµH (η − µL + r)− µL (ηλ+ 2ξ(λ+ ρ) + µL(ρ− r) + r(λ− 2ξ)) + ξ2(−λ− ρ+ r)

(µL + ξ)2 (ρ+ λ− r)
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The denominator is positive, and the numerator is positive if and only if√
λ (µH − µL) (η − µL + r)

λ+ ρ− r
+ µL + ξ > 0

• µL:
∂ν

∂µL
=

λ (µH + ξ) (η + ξ + r)

(−µL − ξ) 2((ρ+ λ− r)
> 0.

• µH :
∂ν

∂µH
=

λ (µH + ξ) (η + ξ + r)

(−µL − ξ) 2((ρ+ λ− r)
> 0.

• λ:
∂ν

∂λ
=
ηξρ+ µH(ρ+ r)(η + ξ + r)− µL(ξ + r)(ρ− r) + ξr(η + 2ξ + 2r)

− (µL + ξ) ((ρ+ λ− r)2
> 0.

• η:
∂ν

∂η
=

λ (µH + ξ)

− (µL + ξ) ((ρ+ λ− r)
> 0.

• ρ:

ν =
(r + η + ξ)(ρ− r)

(ρ+ λ− r)

[
ξ + µH

−(ξ + µL)

λ

ρ− r
− r + ξ

r + η + ξ

]
= −(r + η + ξ)(ξ + µH)λ

(ρ+ λ− r)(ξ + µL)
− (ρ− r)(r + ξ)

(ρ+ λ− r)

Thus

∂ν

∂ρ
=

(r + η + ξ)(ξ + µH)λ

(ρ+ λ− r)2(ξ + µL)
− (r + ξ)(ρ+ λ− r)− (ρ− r)(r + ξ)

(ρ+ λ− r)2

=
(r + η + ξ)(ξ + µH)λ

(ρ+ λ− r)2(ξ + µL)
− (r + ξ)λ

(ρ+ λ− r)2

=
(r + η + ξ)(ξ + µH)λ− (r + ξ)(ξ + µL)λ

(ρ+ λ− r)2(ξ + µL)
< 0

B Analysis of Extensions

B.1 The derivative contract in Section 3.2

In this section, we extend the analysis of the impact of a derivative contract to consider the case
in which the hedging is not perfect. Suppose that the borrower can buy a short-term derivative
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contract written on a variable θ̂t that is correlated with θt in the following way. Without a regime
switch, θ̂t remains a constant. However, if there is a regime switch, θ̂t switches with probability
q ∈ [0, 1] and remains a constant otherwise. The case of q = 1 corresponds to perfect insurance
that we discussed in Section 3.2. If so, markets are dynamically complete, and shocks to θt can be
perfectly insured.

The buyers of the derivative pay a premium ς · dt over the period [t, t + dt), in exchange of a
payment of $1 at time t + dt if there is a change in θ̂t. The expected payoff of this contract over
the period [t, t+ dt) is e−rdtq(1− e−λdt), so no arbitrage implies

ς = lim
dt→0

e−rdt(1− e−λdt)q

dt
= λq.

Let zt denote the number of contracts bought by the equity holder at time t. The analysis in the
low state is unchanged. In the high state, upon the regime shifting, the borrower receives zt with
probability q and nothing with probability 1− q. In the first case, default occurs if jL(ft−)+ zt− ≤
dt−, whereas in the second case, default happens if jL(ft−) ≤ dt−. Consistent with the assumption
of zero recovery, we assume that in the event of default, the payment from the derivative contract
cannot be used to pay long-term creditors.

Given the position zt, the short rate is given by

yH (f, d, z) =


r if d ≤ jL (f)

r + λ(1− q) if jL(f) < d ≤ jL(f) + z

r + λ if d > jL(f) + z.

In the high state, the HJB equation is

(ρ+ λ− µH) jH(f) = max
d∈[0,jH(f)],z≥0

1−(r + ξ) f−qλz+(ρ+ λ− yH) d−(µH+ξ)fj
′
H(f)+

1

2
σ2f2j′′H(f)

+ λqmax {jL(f) + z − d, 0}+ λ(1− q)max {jL(f)− d, 0} . (A.49)

The following Lemma characterizes the solution to the maximization problem in equation (A.49)
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Lemma 6. The optimal short-term debt and hedging policy dH(f), z(f) is

dH(f) =

jL(f) if jL(f) ≥ ρ−r
ρ+λ(1−q)−r jH(f)

jH(f) Otherwise.

z(f) =

0 if jL(f) ≥ ρ−r
ρ+λ(1−q)−r jH(f)

jH(f)− jL(f) Otherwise.

Proof. In equation (A.49), dH and z are chosen to maximize

−qλz + (ρ+ λ− yH) dH + λqmax {jL(f) + z − dH , 0}+ λ(1− q)max {jL(f)− dH , 0} .

There are three situations that we need to consider:

1. If dH ≤ jL(f), the objective becomes

−qλz + (ρ+ λ− r) dH + λq (jL(f) + z − dH) + λ(1− q) (jL(f)− dH) = (ρ− r) dH + λjL(f),

which is maximized at dH = jL(f) with the maximum value

(ρ+ λ− r) jL(f).

2. If dH ∈
(
jL(f), jL(f) + z

]
, the objective becomes

−qλz + (ρ+ λq − r) dH + λq (jL(f) + z − dH) = (ρ− r) dH + λqjL(f),

which is maximized at dH = jL(f) + z with the maximum value

(ρ− r + λq)jL(f) + (ρ− r)z.

Given that dH = jL(f) + z ≤ jH(f), we know z ≤ jH(f) − jL(f). The maximized z =

jH(f)− jL(f), and the maximum value is

(ρ− r)jH(f) + λqjL(f).

3. If dH > jL(f) + z, the objective becomes −qλz + (ρ− r) dH , which is clearly maximized at
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z = 0 and dH = jH(f), with a maximum value

(ρ− r) jH(f).

Clearly, the last one is dominated, so the borrower’s choice is

• If (ρ− r)jH(f)+ λqjL(f) ≤ (ρ+ λ− r)jL(f), then dH = jL(f), and z is irrelevant so without
loss of generality set as zero.

• Otherwise, then dH = jH(f) and z = jH(f)− jL(f).

When dH(f) = jL(f), the firm will survive the regime switch anyway, so insurance is unneces-
sary. By contrast, when dH(f) = jH(f) so that short-term debt is risky, the equity holder buys
enough derivative contracts to insure against the regime shift. The equilibrium takes a similar
form as the one in section 3. The amount of short term debt is dH(f) = jL(f) when f < f†, and
dH(f) = jH(f) if f > f†, with the threshold f† given by the indifference condition

f† = min
{
f ≥ 0 : (ρ+ λ(1− q)− r)jL(f) ≤ (ρ− r)jH(f)

}
.

Given the optimal policy in Lemma 6, we can write the HJB equation in simpler form

(ρ+ λ− µH) jH(f) = 1− (r + ξ) f + (ρ+ λ− r) jL(f)− (µH + ξ)fj′H(f) +
1

2
σ2f2j′′H(f), f ∈ (0, f†)

(r + λ− µH) jH(f) = 1− (r + ξ) f + qλjL(f)− (µH + ξ)fj′H(f) +
1

2
σ2f2j′′H(f), f ∈ (f†, f

b
H).

(A.50)
The price of debt is now given by the solution to the asset pricing equation.

(r + ξ + λ) pH (f) = r + ξ + λpL (f) +
(
gH(f) + σ2 − µH − ξ

)
fp′H(f) +

1

2
σ2f2p′′H(f), f ∈ (0, f†)

(r + ξ + λ) pH (f) = r + ξ + λqpL (f) +
(
gH(f) + σ2 − µH − ξ

)
fp′H(f) +

1

2
σ2f2p′′H(f), f ∈ (f†, f

b
H).

From, here, together with the indifference condition j′H(f) = −pH(f), we can obtain the equilibrium
issuance function. We omit the details, but a similar calculations to the ones in the absence of
hedging show that the equilibrium issuance policy is given by (20). Notice that although the form
of the issuance function does not change the total issuance of long-term debt does change as the
price of long-term debt is now different. The main impact of hedging though is on the value of the
threshold f†.
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It immediately follows from this indifference condition that when q = 1, the threshold f† is
equal to zero as (ρ− r)(jH(f)− jL(f)) > 0. In other words, the borrower does not issue any long-
term debt if she can perfectly insure against the regime shift. The solution in Lemma 6 becomes
dH(f) = jH(f) and z(f) = jH(f)− jL(f) for all f ∈ [0, f bH ]. This provides a proof of Proposition
5.

Solution HJB Equation

The solution to the HJB equation takes the same form as in the baseline model. The function u0
is still given by (A.36), but the expression for u1 is different to the one in equation (A.39) because
it includes the term qλjL(f) capturing the continuation value after the regime switch.

For f ∈ (0, f†), there is no change in the differential equation, so the solution remains the same.
On f ∈ (f†, f

b
H) the HJB equation becomes

(r + λ− µH) jH(f) = 1− (r + ξ) f + qλjL(f) +DHjH(f)

If f ≥ f bL, the continuation value jL(f) and the particular solution is

u1(f) =
1

r + λ− µH
− r + ξ

r + λ+ ξ
f.

When f < f bL, the particular solution takes the form

u1(f) =
1

r + λ− µH

(
1 + q

λ

r + η − µL

)
− r + ξ

r + λ+ ξ

(
1 + q

λ

r + η + ξ

)
f + C

(
f

f bL

)γ
,

Substituting in the previous the ODE, we find that the constant C is given by

C =
λq

λ− η + (µH − µL)(γ − 1)

1

γ − 1

1

r + η − µL
.

The solution then to the HJB equation is

jH(f) =


u0(f) +

(
jH(f†)− u0(f†)

) ( f
f†

)ϕ
f ∈ [0, f†]

u1(f) +
(
jH(f†)− u1(f†)

)
h0
(
f
∣∣f†, f bL)+ (jH(f bL)− u1(f

b
L)
)
h1
(
f
∣∣f†, f bL) f ∈

(
f†, f

b
L

)
u1(f) +

(
jH(f

b
L)− u1(f

b
L)
)
h0
(
f
∣∣f bL, f bH)− u1(f

b
H)h1

(
f
∣∣f bL, f bH) f ∈

[
f bL, f

b
H

]
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where

u0(f) = A 1

ρ+ λ− µH
− B r + ξ

ρ+ λ+ ξ
f + δ

1

γ − 1

1

r + η − µL

(
f

f bL

)γ

u1(f) =


1

r+λ−µH

(
1 + λq

r+η−µL

)
− r+ξ

r+λ+ξ

(
1 + λq

r+η+ξ

)
f + C

(
f
fbL

)γ
if f < f bL

1
r+λ−µH − r+ξ

r+λ+ξf if f ≥ f bL,

and the constants A,B, δ are given by

A =
ρ+ λ+ η − µL
r + η − µL

B =
ρ+ λ+ η + ξ

r + η + ξ
δ =

ρ+ λ− r

ρ+ λ− r − η + (µH − µL)(γ − 1)
.

The functions h0(·) and h1(·) are defined in equation (A.40).
Finally, to show that f† is decreasing in q when f† > 0, it suffices to show that jH(f) is increasing

in q.

Lemma 7. If (ρ+ λ (1− q)− r) jL (0) > (ρ− r) jH (0), then the value function jH (f) is strictly
increasing in q.

Proof. For an arbitrary positive function j̃, we define the following operator:

Φ(j̃)(f) ≡ sup
τ≥0

E
[∫ τ

0
e−ρ̂t

(
1− (r + ξ)zt + ν(zt, j̃(zt)|q)

)
dt
∣∣∣z0 = f

]
subject to dzt = −(ξ + µH)ztdt− σztdBt,

where

ν(z, j̃|q) ≡ max{(ρ+ λ− r) jL (z) , qλjL (z) + (ρ− r) j̃}

and ρ̂ ≡ ρ+ λ− µH . It follows from the HJB equation that the value function jH is a fixed point
jH(f) = Φ(jH)(f). Hence, it is enough to show that the operator Φ is contraction to get that the
solution is unique. First, we can notice that Φ is a monotone operator: For any pair of functions
j̃1 ≥ j̃0, we have ν(f, j̃1|q) ≥ ν(f, j̃0|q); thus it follows that Φ(j̃1)(f) ≥ Φ(j̃0)(f). Next, we can
verify that Φ satisfies discounting: For a ≥ 0, we have

ν(z, j̃ + a|q) = max{(ρ+ λ− r) jL(z), qλjL (z) + (ρ− r) (j̃ + a)}

≤ max{(ρ+ λ− r) jL(z) + (ρ− r)a, qλjL (z) + (ρ− r) (j̃ + a)} = (ρ− r)a+ ν(z, j̃|q),
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so letting τ∗(j̃) denote the optimal stopping policy, we have

Φ(j̃ + a)(f) = E

[∫ τ∗(j̃+a)

0
e−ρ̂t

(
1− (r + ξ)zt + ν(zt, j̃(zt) + a|q)

)
dt
∣∣∣z0 = f

]

≤ E

[∫ τ∗(j̃+a)

0
e−ρ̂t

(
1− (r + ξ)zt + ν(zt, j̃(zt)|q)

)
dt
∣∣∣z0 = f

]
+
ρ− r

ρ̂
E
[
1− e−ρ̂τ

∗(j̃+a)
∣∣∣z0 = f

]
a

≤ E

[∫ τ∗(j̃)

0
e−ρ̂t

(
1− (r + ξ)zt + ν(zt, j̃(zt)|q)

)
dt
∣∣∣z0 = f

]
+
ρ− r

ρ̂
E
[
1− e−ρ̂τ

∗(j̃+a)
∣∣∣z0 = f

]
a

= Φ(j̃)(f) +
ρ− r

ρ̂
E
[
1− e−ρ̂τ

∗(j̃+a)
∣∣∣z0 = f

]
a ≤ Φ(j̃)(f) +

ρ− r

ρ+ λ− µH
a.

As Φ is monotone and satisfies discounting, it follows from Blackwell’s sufficiency conditions that
Φ is a contraction, which means that there is a unique fixed point jH(f) = Φ(jH)(f).

For any pair of parameters q1 ≥ q0, the inequality ν(f, j̃|q1) ≥ ν(f, j̃|q0) implies that the
operator Φ is increasing q. It follows from Theorem 1 in Villas-Boas (1997) that the fixed point
jH (f) = Φ(jH)(f) increases in q.

B.2 Section 4.1 with Restructuring

In this section, we provide the analysis of the equilibrium when short-term debt can be re-
structured. Whenever the borrower announces a default, and there is outstanding short-term debt,
short-term debt can be restructured with some probability. Notice that in both states θ ∈ {H,L},
when the borrower defaults at f bθ , the amount of short-term debt is zero. Therefore, renegotiating
short-term debt is only relevant upon a regime shift from H to L. The renegotiation game goes as
follows. With probability 1− α, it is impossible to renegotiate, and the firm goes bankrupt. With
probably α, the firm enters into a renegotiation process. In this case, the equity holder makes the
offer with probability β and short-term creditors with probability 1−β. If the short-term creditors
make the offer, and this offer is rejected, the firm goes bankrupt. If the equity holder makes the
offer and the offer is rejected, she can still choose between repaying the original short-term debt
and bankruptcy. Figure 1 presents the timing of events.

Following the state transition, the borrower receives jL(f) − dH if she does not default. If
there is a default, with probability 1 − α, there is no renegotiation, and she receives zero. With
probability α, there is renegotiation. In this case, if short-term creditors make an offer, they receive
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0,0

E

jL(f)− dST, dST 0,0

ST

jL(f)− dE, dE E

0,0 jL(f)− dH ,dH

no renegotiation
prob. 1− α

renegotiation
prob. α

ST creditor offer dST
prob. 1− β

accept reject

E offer dE
prob. β

accept reject

not repay repay

Figure 1: Renegotiation process.

The game tree illustrates the renegotiation process. If the firm defaults, renegotiation is triggered with probability
α; otherwise, there is bankruptcy. In the event of renegotiation, the equity holder gets to make an offer with
probability β, in which case she offers dE. Otherwise, the offer is made by short-term creditors, in which case they
offer dST. In the tree, E indicates nodes where the equity holder moves and ST nodes where short-term creditors
move. At the end of the tree, the first coordinate indicates the payoff to the equity holder, and the second
coordinate indicates the payoff to short-term creditors.

jL(f) while the borrower receives 0. If the equity holder makes an offer, they offer 0 and obtain
jL(f), while the short-term creditors get 0; however, such an offer is credible only if jL(f) < dH . If
jL(f) ≥ dH , then the only credible offer is dH .1 It is easy to verify that renegotiation is triggered
only after the regime switch and jL(ft) < dH(ft). The firm goes bankrupt only if the restructuring
process fails, which happens with probability 1 − α. To determine the interest rate, we need to
analyze the expected recovery. If dH(f) ≤ jL(f), there is no default, and short-term creditors
are paid in full. The equity holder does not have incentives to default because no credible offer
would allow paying less than dH . If dH > jL(f), the equity holder default so the expected payoff
is (1 − αβ) × 0 + αβ × jL(f). In the event of default, each creditor gets zero with probability
1− α(1− β); that is, if either renegotiation is not possible or if it is possible, but equity holder is
the one to make the offer. With probability α(1 − β), the short-term debt recovery per dollar is

1When there is indifference, we break ties in favor of the efficient outcome of continuation.
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jL(f)/dH . Hence, the short rate is given by

yH(f, dH) =

r if dH ≤ jL(f)

r + λ
(
1− α(1− β) jL(f)dH

)
if dH > jL(f).

The analysis in state L is unchanged. In state H, we construct an equilibrium similar to the one
without restructuring. The HJB in the high state follows

(ρ+ λ− µH) jH(f) = max
dH∈[0,jH(f)]

(1− π)− (r + ξ) f + (ρ+ λ− yH) dH

+ λ
((
jL(f)− dH

)
1dH≤jL(f) + αβjL(f)1dH>jL(f)

)
− (µH + ξ)fj′H(f) +

1

2
σ2f2j′′H(f). (A.51)

The optimal solution for short-term debt is

dH(f) =

jL(f) if jL(f) ≥ ρ−r
ρ+λ(1−α)−r jH(f)

jH(f) Otherwise.

Note that when α = 0, we are back to the benchmark model. Interestingly, α and β serve different
purposes: the former leads to efficiency loss, and the latter is only about how to redistribute the
surplus across the coalition. The threshold now is determined by the indifference condition

f† = min
{
f ≥ 0 : (ρ+ λ(1− α)− r)jL(f) ≤ (ρ− r)jH(f)

}
. (A.52)

The HJB equation A.51 can be written as

(ρ+ λ− µH) jH(f) = 1− (r + ξ) f + (ρ+ λ− r)jL(f)− (µH + ξ)fj′H(f) +
1

2
σ2f2j′′H(f), f ∈ (0, f†)

(r + λ− µH) jH(f) = 1− (r + ξ) f + λαjL(f)− (µH + ξ)fj′H(f) +
1

2
σ2f2j′′H(f), f ∈ (f†, f

b
H).

(A.53)
We see that the only difference with the original equation is that now, when the firm is fully levered,
there is a term λαjL(f) capturing the continuation value after the regime shift. Notice that the
HJB equation (A.53) takes the same form as the one with hedging in equation (A.50), so hedging
and renegotiation serve a similar economic purpose in the model. The asset pricing equation for
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bond prices becomes

(r + ξ + λ) pH (f) = r + ξ + λpL (f) +
(
gH(f) + σ2 − µH − ξ

)
fp′H(f) +

1

2
σ2f2p′′H(f), f ∈ (0, f†)

(r + ξ + λ) pH (f) = r + ξ + λαpL +
(
gH(f) + σ2 − µH − ξ

)
fp′H(f) +

1

2
σ2f2p′′H(f), f ∈ (f†, f

b
H).

Thus, together with the indifference condition j′H(f) = −pH(f), we obtain the equilibrium issuance
function in the high state is given by the same expression as the one in equation (20). The HJB
and price equations are identical to the ones with hedging, so the proof of Proposition 11 follows
the one in Appendix B.1.

B.3 Section 4.2 with Cash Flow Jumps

Suppose that
dXt = µXtdt+ σXtdBt − (1− ω−1)Xt−dNt,

where Nt is a Poisson process with intensity λ and ω > 1. Using Ito’s Lemma, ft solves

dft = (gt − µ− ξ + σ2)ftdt− σftdBt + (ω − 1)ft−dNt

Thus, the scaled value function satisfies the delay differential equation

(ρ+ λ− µ) j(f) = 1− (r + ξ) f − (µ+ ξ) fj′(f) +
1

2
σ2f2j′′(f)

+ max
{
(ρ− r)

j(ωf)

ω
+ λ

j(ωf)

ω
, (ρ− r)j(f)

}
We guess and verify that the optimal short-term debt policy is given by

d(f) =


j(ωf)
ω if f ∈ [0, f†]

j(f) if f ∈ (f†, f
b].

The HJB equation can be written as

(ρ+ λ− µ) j(f) = 1− (r + ξ) f − (µ+ ξ) fj′(f) +
1

2
σ2f2j′′(f) + (ρ+ λ− r)

j(ωf)

ω
, f ∈ (0, f†)

(r + λ− µ) j(f) = 1− (r + ξ) f − (µ+ ξ) fj′(f) +
1

2
σ2f2j′′(f), f ∈ (f†, f

b).

The default boundary solves the value matching and smooth pasting conditions j(f b) = j′(fb) = 0.
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Long-term bonds satisfy the asset pricing equation

(r + ξ + λ) p(f) = 1− (r + ξ) f +
(
g(f)− µ− ξ + σ2

)
fj′(f) +

1

2
σ2f2j′′(f) + λp(ωf), f ∈ (0, f†)

(r + ξ + λ) p(f) = 1− (r + ξ) f +
(
g(f)− µ− ξ + σ2

)
fj′(f) +

1

2
σ2f2j′′(f), f ∈ (f†, f

b).

Finally, we derive the issuance policy g(f) combining the asset pricing equation with the indifference
condition p(f) = −j′(f). This yields

g (f) =
(ρ− r) (p (f)− p (ωf))

fj′′ (f)
.

Numerical Computation: For computational purposes, it is easier to work with the the state
variable x = log(1/f) = − log f . Let j̃(x) ≡ j(e−x) and δ = logω. Then, we get

j̃′(x) = −j′(e−x)e−x

j̃′′(x) = j′′(e−x)e−2x + j′(e−x)e−x = j′′(e−x)e−2x − j̃′(x)

Substituting in the HJB equation we get

(r + λ− µ) j̃(x) = 1− (r + ξ) e−x +

(
µ+ ξ +

1

2
σ2
)
j̃′(x) +

1

2
σ2j̃′′(x)

− (ρ− r)min
{
j̃(x)− a

j̃(x− δ)

eδ
, 0
}
,

where
a ≡ ρ+ λ− r

ρ− r
.

We write this as a system of two first order equations. Letting y0(x) = j̃(x) and y1(x) = j̃′(x),
we can reduce the second order equation to the following system of first order equations

y′0(x) = y1(x)

y′1(x) =
2

σ2

[
(r + ξ) e−x − 1 + (r + λ− µ) y0(x)−

(
µ+ ξ +

1

2
σ2
)
y1(x)

+(ρ− r)min
{
y0(x)− a

y0(x− δ)

eδ
, 0
}]

.

The previous equation is a system of two first order delay differential equations with constant
coefficient that can be solved using standard numerical routines. The value matching and smooth
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pasting conditions at the default boundary xb = − log f b are y0(x
b) = y1(x

b) = 0. The only
remaining step is to specify the transversality condition. From the HJB equation we get j(0) =

ω
(ρ+λ)(ω−1)+r−µω , so we have the transversality condition

lim
x→∞

y0(x) =
ω

(ρ+ λ)(ω − 1) + r − µω
.

To incorporate this transversality condition, we approximate the value function for f = ϵ. This
corresponds to a value of x given by xϵ = − log ϵ. Differentiating the HJB we get

(ρ+ λ+ ξ) j′(f) = − (r + ξ)−
(
µ+ ξ − σ2

)
fj′′(f) + (ρ+ λ− r)j′(ωf),

and evaluating at f = 0, we get
j′(0) = −1.

Hence, for ϵ close to zero
j(ϵ) ≈ ω

(ρ+ λ)(ω − 1) + r − µω
− ϵ,

which means that
y0(xϵ) = j̃(xϵ) ≈

ω

(ρ+ λ)(ω − 1) + r − µω
− e−xϵ .

Finally, we can write the price and issuance function in terms of the functions y0(x), y1(x). The
price of long-term bonds is given by

p(f) = −j′(f) = j̃′(x)ex = y1(x)e
x.

Letting x† = − log f†, we get that on the [x†,∞), the issuance policy is

g(x) =
(ρ− r)

(
p (e−x)− p

(
e−(x−δ)) )

−e−xp′ (e−x)
=

(ρ− r)
(
y1(x)− y1(x− δ)e−δ

)
−e−x(y′1(x) + y1(x))

B.4 Equilibrium with Only Long-term Debt

We first describe the equilibrium when the borrower is only allowed to issue long-term debt.

Proposition 15 (Equilibrium with only long-term debt). If only long-term debt is allowed, the
unique equilibrium is the following.
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1. In state L, the value function is

vℓL (f) =
1

ρ+ η − µL
− r + ξ

ρ+ η + ξ
f +

1

ρ+ η − µL

1

γℓ − 1

(
f

f bℓL

)γℓ
,

where γℓ is given in (A.56) and the default boundary is given in (A.55).

2. In state H, when f ≤ f bℓL , the value function is

vℓH (f) = uℓ0 (f) +
(
vℓH

(
f bℓL

)
− uℓ0

(
f bℓL

))( f

f bℓL

)ϕ1
,

and

uℓ0 (f) =
1

ρ+ λ− µH

(
1 +

λ

ρ+ η − µL

)
− r + ξ

ρ+ λ+ ξ

(
1 +

λ

ρ+ η + ξ

)
f

+ δℓ
1

γℓ − 1

1

ρ+ η − µL

(
f

f bℓL

)γℓ
,

where
δℓ =

λ

λ− η + (µH − µL)(γℓ − 1)
.

When f ∈
(
f bℓL , f

bℓ
H

]
,

vℓH(f) = uℓ1(f) +
(
vℓH(f

bℓ
L )− uℓ1(f

bℓ
L )
)
h̃0

(
f
∣∣f bℓL , f bℓH)− uℓ1(f

bℓ
H )h̃1

(
f
∣∣f bℓL , f bℓH) ,

where h̃0
(
f
∣∣f bℓL , f bℓH ) and h̃1

(
f
∣∣f bℓL , f bℓH ) are given in ((A.59)) and

uℓ1(f) =
1

ρ+ λ− µH
− r + ξ

ρ+ λ+ ξ
f.

The borrower defaults upon the state transition if f > f bℓL .

3. In both states θ ∈ {L,H}, the debt price is pℓθ = −vℓ′θ , and the issuance function follows

gℓθ =
(ρ− r) pℓθ
−fpℓ′θ

.
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Proof of Proposition 15

Proof. Again, let ṼL = XṽL so that ∂ṼL
∂F = ṽ′L, ∂ṼL

∂X = ṽL − fṽ′L, and X ∂2ṼL
∂X2 = f2ṽ′′L. For notation

convenience, we use ṽθ = vℓθ. The scaled HJB becomes

(ρ+ η − µL) ṽL = 1− (r + ξ) f − (µL + ξ) fṽ′L +
1

2
σ2f2ṽ′′L.

Using the conditions limf→0 ṽL (f) <∞, ṽL
(
f̃ bL

)
= 0, and ṽ′L

(
f̃ bL

)
= 0, we obtain the solution

ṽL (f) =
1

ρ+ η − µL
− r + ξ

ρ+ η + ξ
f +

r + ξ

ρ+ η + ξ

f̃ bL
γ̃

(
f

f̃ bL

)γ̃
(A.54)

f̃ bL =
1

ρ+ η − µL

γ̃

γ̃ − 1

ρ+ η + ξ

r + ξ
(A.55)

where

γ̃ =
µL + ξ + 1

2σ
2 +

√(
µL + ξ + 1

2σ
2
)2

+ 2σ2 (ρ+ η − µL)

σ2
> 1. (A.56)

In a smooth equilibrium, p̃L = −ṽ′L, and p̃L satisfies

(r + ξ + η) p̃L = (r + ξ) +
(
gL − ξ − µL + σ2

)
fp̃′L +

1

2
σ2f2p̃′′L.

Differentiating once the HJB for ṽL, we get g̃L = (ρ−r)p̃L
fṽ′′L

.
In the high state, the scaled HJB becomes

(ρ− µH) ṽH = 1− (r + ξ) f − (µH + ξ) fṽ′H +
1

2
σ2f2ṽ′′H + λ (ṽL − ṽH) .

From (A.54), we know

ṽL (f) =


1

ρ+η−µL − r+ξ
ρ+η+ξf + r+ξ

ρ+η+ξ
f̃bL
γ̃

(
f

f̃bL

)γ̃
when f ≤ f̃ bL

0 when f > f̃ bL

.

Using the conditions limf→0 ṽH (f) <∞, we know when f ≤ f̃ bL,

ṽH (f) = ũ0 (f) +
(
ṽH

(
f̃ bL

)
− ũ0

(
f̃ bL

))( f

f̃ bL

)ϕ1
,
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where

ũ0 (f) =
(ρ+ η + λ− µL)

(ρ+ η − µL) (ρ+ λ− µH)
− (r + ξ) (ρ+ η + λ+ ξ)

(ρ+ η + ξ) (ρ+ λ+ ξ)
f +

λ r+ξ
ρ+η+ξ

λ− η + (µH − µL)(γ̃ − 1)

f̃ bL
γ̃

(
f

f̃ bL

)γ̃
,

ϕ1 =
µH + ξ + 1

2σ
2 +

√(
µH + ξ + 1

2σ
2
)2

+ 2σ2 (ρ+ λ− µH)

σ2
> 1.

The solution on the interval
[
f̃ bL, f̃

b
H

]
can be obtained in a similar way. In this interval, the value

function satisfies the equation

(ρ+ λ− µH) ṽH(f) = 1− (r + ξ) f +DH ṽH(f).

The homogeneous equation
(ρ+ λ− µH)φ = DHφ

has two solution fϕ1 and fϕ2 , where

ϕ1 =
µH + ξ + 1

2σ
2 +

√(
µH + ξ + 1

2σ
2
)2

+ 2σ2 (ρ+ λ− µH)

σ2
> 1

ϕ2 =
µH + ξ + 1

2σ
2 −

√(
µH + ξ + 1

2σ
2
)2

+ 2σ2 (ρ+ λ− µH)

σ2
< 0.

(A.57)

Hence, the value function takes the form

ṽH (f) = u1(f) +D1f
ϕ1 +D2f

ϕ2 .

As before, the particular solution

u1(f) =
1

ρ+ λ− µH
− r + ξ

ρ+ λ+ ξ
f (A.58)

Finally, by combining equations ṽH
(
f̃ bL−

)
= ṽH

(
f̃ bL+

)
and ṽH

(
f̃ bH

)
= 0, we get

D1 =
ṽH(f̃

b
L) + u1(f̃

b
H)
(
f̃bL
f̃bH

)ϕ2
− u1(f̃

b
L)

(f̃ bH)
ϕ1

[(
f̃bL
f̃bH

)ϕ1
−
(
f̃bL
f̃bH

)ϕ2]
D2 = (f̃ bH)

−ϕ2
(
−u1(f̃ bH)−D1(f̃

b
H)

ϕ1
)
.
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It follows that the solution to the value function on this interval is given by

ṽH(f) = u1(f) +
(
ṽH(f̃

b
L)− u1(f̃

b
L)
)
h̃0

(
f
∣∣f̃ bL, f̃ bH)− u1(f̃

b
H)h̃1

(
f
∣∣f̃ bL, f̃ bH) ,

where

h̃0

(
f
∣∣f̃ bL, f̃ bH) =

(
f

f̃bH

)ϕ1
−
(
f

f̃bH

)ϕ2
(
f̃bL
f̃bH

)ϕ1
−
(
f̃bL
f̃bH

)ϕ2
h̃1

(
f
∣∣f̃ bL, f̃ bH) =

(
f̃bL
f̃bH

)ϕ2 (
f

f̃bH

)ϕ1
−
(
f̃bL
f̃bH

)ϕ1 (
f

f̃bH

)ϕ2
(
f̃bL
f̃bH

)ϕ2
−
(
f̃bL
f̃bH

)ϕ1 .

(A.59)

It remains to solve
{
ṽH

(
f̃ bL

)
, f bH

}
from ṽ′H

(
f̃ bL−

)
= ṽ′H

(
f̃ bL+

)
and ṽ′H

(
f̃ bH

)
= 0.

In a smooth equilibrium, p̃H = −ṽ′H , and p̃H satisfies

(r + ξ) p̃H = (r + ξ) +
(
g̃H − ξ − µH + σ2

)
fp̃′H +

1

2
σ2f2p̃′′H + λ (p̃L − p̃H) .

Differentiating once the HJB for ṽH , we get g̃H = (ρ−r)p̃H
fṽ′′H

.

B.5 Transitory Shocks

In this section, we extend the model to consider some further empirical implications. In the
main model, we have assumed that the state θt = L, is absorbing. If we interpret the changes
in regime as business-cycles, it is natural to assume that these are transitory. We can extend the
model to consider this situation. We denote the transition rate from the high state to the low
state by λHL, and the transition rate from the low state to the high state by λLH . The stationary
distribution of the process θt is then given by Pr(θ = H) = λLH/(λLH + λHL).

The equilibrium has the same qualitative features. The only changes is that in the HJB equation
(A.2) for jL(f) and in the asset pricing equation (18) for pL(f), we have to add additional terms
λLH

(
jH(f)− jL(f)

)
and λLH

(
pH(f)− pL(f)

)
, respectively. The issuance policy takes the general

form provided in equation (20). When shocks are transitory, the HJB equation for jL(f) becomes

(ρ+ η − µL) jL (f) = 1− (r + ξ) f + (ρ− r) jL(f) +DLjL(f) + λLH
(
jH(f)− jL(f)

)
.

The indifference condition for the issuance of short-term debt in high state remains the same and
is given by

(ρ+ λHL − r) jL(f†) ≥ (ρ− r) jH(f†).
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We solve the equation in this region, and the combines the solution using smooth pasting and value
matching conditions at the threshold f†. The default boundary are determined using the same
value matching and smooth pasting conditions as in the main version of the model.

Solution for f ∈ (0, f†). The characteristic equation of the associated homogenous equation is
now a quartic equation instead of a quadratic one. Hence the solution takes the general form:

jL(f) = A0 −A1f +A2f
γ1 +A3f

γ2 +A4f
γ3 +A5f

γ4

jH(f) = B0 −B1f +B2f
γ1 +B3f

γ2 +B4f
γ3 +B5f

γ4 .

Substituting the conjecture in the ODE, we get the linear system

(r + λLH + η − µL)A0 = 1 + λLHB0

(ρ+ λHL − µH)B0 = 1 + (ρ+ λHL − r)A0

(r + ξ + λLH + η)A1 = (r + ξ) + λLHB1

(ρ+ ξ + λHL)B1 = (r + ξ) + (ρ+ λHL − r)A1.

It follows that

A0 =
ρ+ λHL + λLH − µH

(ρ+ λHL − µH) (r + η − µL) + λLH (r − µH)

A1 =
(ρ+ ξ + λHL + λLH) (r + ξ)

(ρ+ ξ + λHL) (r + ξ + η) + λLH (r + ξ)

B0 =
1 + (ρ+ λHL − r)A0

ρ+ λHL − µH

B1 =
(r + ξ) + (ρ+ λHL − r)A1

ρ+ ξ + λHL

In addition, for any i = 1, . . . , 4

(r + λLH + η − µL)Ai+1 = − (µL + ξ)Ai+1γi + λLHBi+1 +
1

2
σ2Ai+1γi (γi − 1)

(ρ+ λHL − µH)Bi+1 = (ρ+ λHL − r)Ai+1 − (µH + ξ)Bi+1γi +
1

2
σ2Bi+1γi (γi − 1)

If we multiply the equation for A2 by γ1, we get

(r + λLH + η − µL) γ1A2 = − (µL + ξ)A2γ
2
1 + λLHB2γ1 +

1

2
σ2A2γ

2
1 (γ1 − 1)
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when λLH ̸= 0, from the equation for A2 we have

λLHB2 =

[
(r + λLH + η − µL) + (µL + ξ) γ1 −

1

2
σ2γ1 (γ1 − 1)

]
A2.

Substituting in the equation for B2 we obtain an expression for B2γ1 that can be then substituted
back in the equation for A2 (multiplied by γ1). Canceling A2, we obtain the characteristic equation
for the homogenous equation

1

4
σ4γ41 +

1

2
σ2
(
µL + µH + 2ξ + σ2

)
γ31

+

[
1

4
σ4 − 1

2
σ2 (ρ+ λHL + r + λLH + η − 2 (µL + µH + ξ)) + (µL + ξ) (µH + ξ)

]
γ21

+

[(
µH + ξ +

1

2
σ2
)
(r + λLH + η − µL) + (ρ+ λHL − µH)

(
µL + ξ +

1

2
σ2
)]

γ1

+ (ρ+ λHL − µH) (r + η − µL) + (r − µH)λLH = 0

This equation has four roots.

Solution for f ∈ (f†, f
b
H). In this case, we guess a solution of the form

jL(f) = C0 − C1f + C2f
β1 + C3f

β2 + C4f
β3 + C5f

β4

jH(f) = D0 −D1f +D2f
β1 +D3f

β2 .

From the HJB equation for jH(f), we get that β1 and β2 are the roots for the quadratic equation

1

2
σ2β2 −

(
µH + ξ +

1

2
σ2
)
β + µH − r − λHL = 0,

which are given by

β1 =
µH + ξ + 1

2σ
2 +

√(
µH + ξ + 1

2σ
2
)2 − 2σ2 (µH − r − λHL)

σ2
,

β2 =
µH + ξ + 1

2σ
2 −

√(
µH + ξ + 1

2σ
2
)2 − 2σ2 (µH − r − λHL)

σ2
.

From the equation for jL, we get that β3 and β4 are given by the roots to the quadratic equation

1

2
σ2β2 −

(
µL + ξ +

1

2
σ2
)
β − (r + λLH + η − µL) = 0,
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which are

β3 =
µL + ξ + 1

2σ
2 +

√(
µL + ξ + 1

2σ
2
)2

+ 2σ2 (r + λLH + η − µL)

σ2
> 1,

β4 =
µL + ξ + 1

2σ
2 −

√(
µL + ξ + 1

2σ
2
)2

+ 2σ2 (r + λLH + η − µL)

σ2
< 0.

Matching coefficients, we get that

D0 =
1

r + λHL − µH

D1 =
r + ξ

r + ξ + λHL

C0 =
1 + λLHD0

r + λLH + η − µL

C1 =
r + ξ + λLHD1

r + ξ + λLH + η

C2 =
λLHD2

r + λLH + η − µL + (µL + ξ)β1 − 1
2σ

2 (β1 − 1)β1

C3 =
λLHD3

r + λLH + η − µL + (µL + ξ)β2 − 1
2σ

2 (β2 − 1)β2
.

Boundary Conditions. We still need to determine the coefficients (Ai, Bi) for i = 2, . . . , 5, the
coefficients D2, D3, and C4, C5, as well as the thresholds f†, f bH , f bL.

We start considering f ∈ (0, f†). Under reasonable parameters, we have found that all four
roots of the quartic characteristic equation are real, and that two of them are positive (let the
positive roots be γ1 and γ2). If this is the case, the transversality conditions

lim
f→0

jH(f) <∞,

lim
f→0

jL(f) <∞,

imply that A4 = A5 = B4 = B5 = 0. Thus, we can write the value function as

jL(f) = A0 −A1f +A2f
γ1 +A3f

γ2

jH(f) = B0 −B1f +B2f
γ1 +B3f

γ2 ,

where the coefficients A0, A1, B0, B1 have already been determined. Moreover, from the previous
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analysis we already have that for i = 2, 3[
(r + λLH + η − µL) + (µL + ξ) γi−1 −

1

2
σ2γi (γi−1 − 1)

]
Ai = λLHBi,

so the coefficients {B2, B3} are immediately determined by the 2 free coefficients {A2, A3}.
Next, we consider the intervals (f†, f

b
H) and (f†, f

b
L). Here we have that jθ(f) takes the form

jL(f) = C0 − C1f + C2f
β1 + C3f

β2 + C4f
β3 + C5f

β4

jH(f) = D0 −D1f +D2f
β1 +D3f

β2 .

where we have 4 free coefficients {C2, C3, C4, C5} since {D2, D3} are fully determined by {C2, C3}.
Thus, we have to determine (A2, A3, C2, C3, C4, C5) in addition to the free boundary (f†, f

b
L, f

b
H);

hence, we need 9 boundary conditions. The first boundary condition is the indifference condition

(ρ+ λHL − r) jL(f†) = (ρ− r) jH(f†).

The value function must be continuously differentiable at f† se we have the value matching and
smooth pasting conditions at f†

jH(f†−) = jH(f†+)

jL(f†−) = jL(f†+)

j′H(f†−) = j′H(f†+)

j′L(f†−) = j′L(f†+).

Finally, we have the value matching and smooth pasting conditions at the default boundary

jL(f
b
L) = 0

jH(f
b
H) = 0

j′L(f
b
L) = 0

j′H(f
b
H) = 0.
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Substituting the value function in these conditions, we get

A0 −A1f† +A2 (f†)
γ1 +A3 (f†)

γ2 =
ρ− r

ρ+ λHL − r
(B0 −B1f† +B2 (f†)

γ1 +B3 (f†)
γ2)

B0 −B1f† +B2 (f†)
γ1 +B3 (f†)

γ2 = D0 −D1f† +D2 (f†)
β1 +D3 (f†)

β2

A0 −A1 (f†) +A2 (f†)
γ1 +A3 (f†)

γ2 = C0 − C1f† + C2 (f†)
β1 + C3 (f†)

β2 + C4 (f†)
β3 + C5 (f†)

β4

−B1 + γ1B2 (f†)
γ1−1 + γ2B3 (f†)

γ2−1 = −D1 + β1D2 (f†)
β1−1 + β2D3 (f†)

β2−1

−A1 + γ1A2 (f†)
γ1−1 + γ2A3 (f†)

γ2−1 = −C1 + β1C1 (f†)
β1−1 + β2C3 (f†)

β2−1

+ β3C4 (f†)
β3−1 + β4C5 (f†)

β4−1

and

C0 − C1f
b
L + C2

(
f bL

)β1
+ C3

(
f bL

)β2
+ C4

(
f bL

)β3
+ C5

(
f bL

)β4
= 0

D0 −D1f
b
H +D2

(
f bH

)β1
+D3

(
f bH

)β2
= 0

−C1 + β1C2

(
f bL

)β1−1
+ β2C3

(
f bL

)β2−1
+ β3C4

(
f bL

)β3−1
+ β4C5

(
f bL

)β4−1
= 0

−D1 + β1D2

(
f bH

)β1−1
+ β2D3

(
f bH

)β2−1
= 0.

We can simply the above 9 equations into 3 equations and only solve the three unknowns (f†, f bL, f bH):
From

D0 −D1f
b
H +D2

(
f bH

)β1
+D3

(
f bH

)β2
= 0,

−D1 + β1D2

(
f bH

)β1−1
+ β2D3

(
f bH

)β2−1
= 0,

we know

D2 =

β2
r+λHL−µH − (β2 − 1) r+ξ

r+ξ+λHL
f bH(

f bH
)β1 (β1 − β2)

D3 =

β1
r+λHL−µH − (β1 − 1) r+ξ

r+ξ+λHL
f bH(

f bH
)β2 (β2 − β1)

.
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Then we know C2, C3 from

C2 =
λLHD2

r + λLH + η − µL + (µL + ξ)β1 − 1
2σ

2 (β1 − 1)β1

C3 =
λLHD3

r + λLH + η − µL + (µL + ξ)β2 − 1
2σ

2 (β2 − 1)β2

From

B0 −B1f† +B2 (f†)
γ1 +B3 (f†)

γ2 = D0 −D1f† +D2 (f†)
β1 +D3 (f†)

β2

−B1 + γ1B2 (f†)
γ1−1 + γ2B3 (f†)

γ2−1 = −D1 + β1D2 (f†)
β1−1 + β2D3 (f†)

β2−1 ,

we know

B2 =
−D1 + β1D2 (f†)

β1−1 + β2D3 (f†)
β2−1 +B1 − γ2B3 (f†)

γ2−1

γ1 (f†)
γ1−1 ,

B3 =
D0 −D1f† +D2 (f†)

β1 +D3 (f†)
β2 −

(
B0 −B1f† +

1
γ1

(
−D1f† + β1D2 (f†)

β1 + β2D3 (f†)
β2 +B1f†

))
(
1− γ2

γ1

)
(f†)

γ2

Then we know A2 and A3 where

A2 =
λLHB2

(r + λLH + η − µL) + (µL + ξ) γ1 − 1
2σ

2γ1 (γ1 − 1)
.

A3 =
λLHB3

(r + λLH + η − µL) + (µL + ξ) γ2 − 1
2σ

2γ2 (γ2 − 1)

From

C0 − C1f
b
L + C2

(
f bL

)β1
+ C3

(
f bL

)β2
+ C4

(
f bL

)β3
+ C5

(
f bL

)β4
= 0

−C1 + β1C2

(
f bL

)β1−1
+ β2C3

(
f bL

)β2−1
+ β3C4

(
f bL

)β3−1
+ β4C5

(
f bL

)β4−1
= 0
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we know

C4 =
C1 − β1C2

(
f bL
)β1−1 − β2C3

(
f bL
)β2−1 − β4C5

(
f bL
)β4−1

β3
(
f bL
)β3−1

,

C5 =
−C0 + C1f

b
L − C2

(
f bL
)β1 − C3

(
f bL
)β2 − C1fbL−β1C2(fbL)

β1−β2C3(fbL)
β2

β3(
1− β4

β3

) (
f bL
)β4

Therefore, we only need to solve (f†, f
b
L, f

b
H) from the following 3 equations:

A0 −A1f† +A2 (f†)
γ1 +A3 (f†)

γ2 =
ρ− r

ρ+ λHL − r
(B0 −B1f† +B2 (f†)

γ1 +B3 (f†)
γ2)

A0 −A1 (f†) +A2 (f†)
γ1 +A3 (f†)

γ2 = C0 − C1f† + C2 (f†)
β1 + C3 (f†)

β2 + C4 (f†)
β3 + C5 (f†)

β4

−A1 + γ1A2 (f†)
γ1−1 + γ2A3 (f†)

γ2−1 = −C1 + β1C2 (f†)
β1−1 + β2C3 (f†)

β2−1

+ β3C4 (f†)
β3−1 + β4C5 (f†)

β4−1

Limit when σ → 0

As in the case where the low state is absorbing, we can obtain a more explicit solution for the
equilibrium in the limit when σ → 0.

Proposition 16 (Limit long-term debt issuance policy). Suppose that µL+ ξ < 0, µH + ξ > 0, and

(r + λHL − µH) (r + η − µL) + (r − µH)λLH ≥ 0.

In the limit when σ → 0, the issuance policy is

gθ(f) =
ρ− r

γ − 1

[
g0 + g1

(
f

f†

)−(γ−1)
]
1{f<f†, θ=H}

where g0 and g1 are positive coefficients and γ > 1 is the unique positive root of

γ2 +

(
ρ+ λHL − µH

µH + ξ
− r + λLH + η − µL

−(µL + ξ)

)
γ − (ρ+ λHL − µH) (r + η − µL) + (r − µH)λLH

−(µL + ξ)(µH + ξ)
= 0.

Consider the case when µL + ξ < 0 < µH + ξ. The characteristic equation for γi converges to
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the quadratic equation

(µL + ξ) (µH + ξ) γ21 + [(µH + ξ) (r + λLH + η − µL) + (ρ+ λHL − µH) (µL + ξ)] γ1

+ (ρ+ λHL − µH) (r + η − µL) + (r − µH)λLH = 0

The present value of cash flow is finite given the creditors’ discount rate only if

(r + λHL − µH) (r + η − µL) + (r − µH)λLH > 0,

which implies that the quadratic equation has one negative and one positive root. Let γ be the
positive root, which can be verified to always be greater than 1. Similarly, the roots βi converge to

β1 = ∞

β2 = −r + λHL − µH
µH + ξ

β3 =
r + λLH + η − µL

− (µL + ξ)

β4 = −∞.

Thus the solution to the HJB equation on (0, f†), becomes

jL(f) = A0 −A1f +A2f
γ

jH(f) = B0 −B1f +B2f
γ ,

while the solution for (f†, f
b
H) and (f†, f

b
L) becomes

jL(f) = C0 − C1f + C3f
β2 + C4f

β3

jH(f) = D0 −D1f +D3f
β2 .

The coefficient A2, B2 are given by

A2 =
λLH

(r + λLH + η − µL) + (µL + ξ) γ

B1 −D1

γ (f†)
γ−1 .
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From the continuity and smoothness of jH(f) at f†, we know

B0 −B1f† +B2f
γ
† = D0 −D1f† +D3f

β2
†

−B1 + γB2f
γ−1
† = −D1 + β2D3f

β2−1
† ,

which implies that

B2 =
β2 (D0 −B0) + (1− β2) (D1 −B1) f†

(β2 − γ) fγ†

D3 =
(1− γ) (D1 −B1) f† + γ (D0 −B0)

(β2 − γ) fβ2†
.

The coefficients C3, C4 are

C3 =
λLHD3

r + λLH + η − µL + (µL + ξ)β2

C4 =
C1 − β2C3

(
f bL
)β2−1

β3
(
f bL
)β3−1

.

Substituting in the HJB equation, we can write the solution for f ∈ [0, f†] as

jL(f) = A0 −A1f +
λLH

r + λLH + η − µL + (µL + ξ) γ

β2 (D0 −B0) + (1− β2) (D1 −B1) f†
β2 − γ

(
f

f†

)γ
jH(f) = B0 −B1f +

β2 (D0 −B0) + (1− β2) (D1 −B1) f†
β2 − γ

(
f

f†

)γ
.

For f > f†, we can write

jH(f) = D0 −D1f +

[
(1− γ) (D1 −B1) f† + γ (D0 −B0)

β2 − γ

](
f

f†

)β2
= D0

[
1 +

γ

β2 − γ

(
f

f†

)β2]
−D1f

[
1− 1− γ

β2 − γ

(
f

f†

)β2−1
]
−
[
(1− γ)B1f† + γB0

β2 − γ

](
f

f†

)β2
and

jL(f) = C0 − C1f + C3f
β2 + C4f

β3

= C0 − C1f

[
1− 1

β3

(
f

f bL

)β3−1
]
+ C3f

β2

[
1− β2

β3

(
f

f bL

)β3−β2]
.
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where we recollect that the constant A0, A1, B0, B1, C0, C1, D0, D1 are

A0 =
ρ+ λHL + λLH − µH

(ρ+ λHL − µH) (r + η − µL) + λLH (r − µH)

A1 =
(ρ+ ξ + λHL + λLH) (r + ξ)

(ρ+ ξ + λHL) (r + ξ + η) + λLH (r + ξ)

B0 =
1 + (ρ+ λHL − r)A0

ρ+ λHL − µH

B1 =
(r + ξ) + (ρ+ λHL − r)A1

ρ+ ξ + λHL

D0 =
1

r + λHL − µH

D1 =
r + ξ

r + ξ + λHL

C0 =
1 + λLHD0

r + λLH + η − µL

C1 =
r + ξ + λLHD1

r + ξ + λLH + η
.

Finally, we get the equations determining the thresholds f†, f bH , f bL which are given now by

jL(f†−) = jL(f†+)

jL(f
b
L) = 0

jH(f
b
H) = 0

which can be written as

A0 −A1f† +A2f
γ
† = C0 − C1f† + C3f†

β2 + C4f†
β3

C0 − C1f
b
L + C3f

b
L
β2

+ C4f
b
L
β3

= 0

D0 −D1f
b
H +D3f

b
H
β2

= 0.

Issuance Function: Before deriving the issuance function we need to derive the debt price, which
is given by pθ(f) = −j′θ(f). Taking derivatives for f ∈ (0, f†) we get

pL(f) = A1 +
λLH

r + λLH + η − µL + (µL + ξ) γ

γ

γ − β2

β2 (D0 −B0) + (1− β2) (D1 −B1) f†
f†

(
f

f†

)γ−1

pH(f) = B1 +
γ

γ − β2

β2 (D0 −B0) + (1− β2) (D1 −B1) f†
f†

(
f

f†

)γ−1

.
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Finally, we compute the issuance function. We need to find p′H(f) for f ∈ (0, f†). This expression
is given by

−fp′H(f) = −γ(γ − 1)

γ − β2

β2 (D0 −B0) + (1− β2) (D1 −B1) f†
f†

(
f

f†

)γ−1

.

Next, we compote pH(f)− pL(f) which is

pH(f)−pL(f) = B1−A1+
r + η − µL + (µL + ξ) γ

r + λLH + η − µL + (µL + ξ) γ

β2 (D0 −B0) + (1− β2) (D1 −B1) f†
f†

γ

γ − β2

(
f

f†

)γ−1

From here we get that

gH(f) =
(ρ− r)(pH(f)− pL(f))

−fp′H(f)

=
ρ− r

γ − 1

[
g0 + g1

(
f

f†

)−(γ−1)
]

where

g0 = − r + η − µL + (µL + ξ)γ

r + λLH + η − µL + (µL + ξ) γ

g1 = −
(
1− β2

γ

)
(B1 −A1)f†

β2 (D0 −B0) + (1− β2) (D1 −B1) f†

Finally, noting that pL(0) = A1, pH(0) = B1, and B0 = jH(0), an substituting the relations

(ρ− r)jH(0)− (ρ+ λHL − r) jL(0) = 1− (r + λHL − µH) jH(0)

(ρ− r)pH(0)− (ρ+ λHL − r) pL(0) = (r + ξ)− (r + ξ + λHL) pH(0),

we can write

g1 =

(
1

γ
+

µH + ξ

r + λHL − µH

)
(r + λHL − µH)(pH(0)− pL(0))f†

(ρ− r)jH(0)− (ρ+ λHL − r) jL(0)−
[
(ρ− r)pH(0)− (ρ+ λHL − r) pL(0)

]
f†

Letting
φ(f) ≡ (ρ− r)jH(f)− (ρ+ λHL − r) jL(f)
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we can write

(ρ− r)jH(0)− (ρ+ λHL − r) jL(0)−
[
(ρ− r)pH(0)− (ρ+ λHL − r) pL(0)

]
f† = φ(0) + φ′(0)f†.

For f ∈ (0, f†),

φ′′(f) = (ρ+ λHL − r)

[
ρ− r

ρ+ λHL − r
− λLH
r + λLH + η − µL + (µL + ξ) γ

]
γ(γ − 1)Qfγ−2,

where
Q ≡ γ

γ − β2

β2 (D0 −B0) + (1− β2) (D1 −B1) f†
f†

(
1

f†

)γ−1

.

jθ(f) is strictly convex only if Q > 0. Hence, the sign of φ′′ is determined by the sign of the term
within the parenthesis. The coefficient γ is the positive root of the quadratic equation

γ2 +

(
ρ+ λHL − µH

µH + ξ
− r + λLH + η − µL

−(µL + ξ)

)
γ − (ρ+ λHL − µH) (r + η − µL) + (r − µH)λLH

−(µL + ξ)(µH + ξ)
= 0.

This equation can be rewritten more conveniently as

λLH
r + λLH + η + (γ − 1)µL + γξ

=
ρ+ λHL + (γ − 1)µH + ξγ

ρ+ λHL − r
>

ρ− r

ρ+ λHL − r
,

which implies that the term within the parenthesis in φ′′(f) is negative. Thus, we conclude that
φ(f) is concave on [0, f†], so φ(f†) ≤ φ(0) + φ′(0)f†. By construction, φ(f†) = 0, so it follows that
φ(0) + φ′(0)f† ≥ 0, which means that g1 > 0. Moreover, from the previous equation for γ we also
get that r + λLH + η + (γ − 1)µL + γξ > 0 and

r + η + (γ − 1)µL + γξ = −λLH
r + (γ − 1)µH + ξγ

ρ+ λHL + (γ − 1)µH + ξγ
< 0,

so it follows that g0 > 0.

B.6 The microfoundation of the disaster shock

Now we show that the disaster shock can be microfounded by a model with three states, high
(H), low (L), and disaster (ℓ), where µH > µL > µℓ. In other words, the low state can still get
worse. As before, let λ be the transition intensity from H to L and η be the one from L to ℓ. We
are interested in the condition such that in the low state L, the borrower optimally choose to issue
risky short-term debt. In other words, the corresponding f† is zero in the low state L. To do so,
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we only need to study the value functions in θ = L and θ = ℓ.
When θ = L, the HJB is

(ρ+ η) jL (f) = max
{0≤dL≤jL}

1− (r + ξ) f + (ρ+ η − y) dθ (f) + η (jℓ(f)− dL (f))
+

+µL
(
jL (f)− j′L (f) f

)
+

1

2
σ2f2j′′L (f)− ξfj′L (f)

⇒ (ρ+ η − µL) jL (f) = max
{0≤dL≤jL}

1− (r + ξ) f + (ρ+ η − yL) dL (f)

+η (jℓ(f)− dL (f))
+ − (µL + ξ) fj′L (f) +

1

2
σ2f2j′′L (f)

The HJB when θ = ℓ is

(ρ− µℓ) jℓ (f) = max
{0≤dℓ≤jℓ}

1− (r + ξ) f + (ρ− yℓ) dℓ (f)− (µℓ + ξ) fj′ℓ (f) +
1

2
σ2f2j′′ℓ (f) .

= 1− (r + ξ) f + (ρ− r) jℓ (f)− (µℓ + ξ) fj′ℓ (f) +
1

2
σ2f2j′′ℓ (f) ,

which implies that

(r − µℓ) jℓ (f) = 1− (r + ξ) f − (µℓ + ξ) fj′ℓ (f) +
1

2
σ2f2j′′ℓ (f)

The short rate is
yL(d, f) = r + η1d>jℓ(f)

and

yℓ(d, f) = r.

In state ℓ, we have d = jℓ(f). In state L we have

1. If dL = jℓ(f), the flow benefit of issuing short-term debt is

(ρ+ η − r) jℓ(f)

2. If dL = jL(f), the flow benefit of issuing short-term debt is

(ρ− r) jL(f)
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3. Hence, d = jℓ is optimal if

(ρ+ η − r) jℓ(f) ≥ (ρ− r)jL(f)

We can conclude that

• If (ρ+ η − r) jℓ(f) ≥ (ρ− r) jL(f) the HJB equation is

(r − µℓ) jℓ (f) = 1− (r + ξ) f − (µℓ + ξ) fj′ℓ (f) +
1

2
σ2f2j′′ℓ (f)

(ρ+ η − µL) jL (f) = 1− (r + ξ) f + (ρ+ η − r) jℓ(f)

− (µL + ξ) fj′L (f) +
1

2
σ2f2j′′L (f)

which can be reduced to

(r − µℓ) jℓ (f) = 1− (r + ξ) f − (µℓ + ξ) fj′ℓ (f) +
1

2
σ2f2j′′ℓ (f)

(ρ+ η − µL) jL(f) = 1− (r + ξ) f + (ρ+ η − r) jℓ(f)

− (µL + ξ) fj′L(f) +
1

2
σ2f2j′′L (f)

• If (ρ+ η − r) jℓ(f) < (ρ− r) jH(f) the HJB equation is

(r − µℓ) jℓ (f) = 1− (r + ξ) f − (µℓ + ξ) fj′ℓ (f) +
1

2
σ2f2j′′ℓ (f)

(ρ+ η − µL) jL (f) = 1− (r + ξ) f + (ρ− r) jL(f)

− (µL + ξ) fj′L (f) +
1

2
σ2f2j′′L (f)

which can be reduced to

((r + η)− µℓ) jℓ (f) = 1− (r + ξ) f − (µℓ + ξ) fj′ℓ (f) +
1

2
σ2f2j′′ℓ (f)

((r + η)− µL) jL(f) = 1− (r + ξ) f − (µL + ξ) fj′L(f) +
1

2
σ2f2j′′L (f)

• In state ℓ, the default boundary is f bℓ , satisfying

jℓ(f
b
ℓ ) = 0

j′ℓ(f
b
ℓ ) = 0.
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Since jL (0) = 1
ρ+η−µL

ρ+η−µℓ
r−µℓ and jℓ (0) =

1
r−µℓ , to let f† = 0 in the low state, it is necessary and

sufficient to have
(ρ+ η − r) jℓ(0) ≤ (ρ− r) jL(0).

That is
(ρ+ η − r)

1

(r + η)− µℓ
≤ (ρ− r)

1

ρ+ η − µL

ρ+ η − µℓ
r − µℓ

.

From here, we get
η2 + (ρ− µL) η − (ρ− r) (µL − µℓ) ≤ 0.

This implies that

0 < η ≤ η̄ =
− (ρ− µL) +

√
(ρ− µL)

2 + 4 (ρ− r) (µL − µℓ)

2
. (A.60)
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