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Abstract

Intermediaries can reduce agency frictions in the credit market through monitoring. To be a

credible monitor, an intermediary needs to retain a fraction of its loans; we study the credit

market dynamics when it cannot commit to doing so. We compare certification – investors

directly lend to borrowers – with intermediation – investors indirectly lend through intermedi-

aries. With commitment to retentions, certification and intermediation are equivalent. Without

commitment, they lead to very different dynamics in loan sales and monitoring. A certifying

bank sells its loans and reduces monitoring over time. By contrast, an intermediating bank

issues short-term debt to internalize the monitoring externalities and retain its loans. While the

borrowing capacity is higher under intermediation, an entrepreneur may prefer to borrow from

a certifying intermediary.
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1 Introduction

Financial intermediaries conduct valuable services and therefore benefit the real economy. To

appropriately align intermediaries’ incentives, the optimal financing arrangement typically involves

the retention of a fraction of loans by them as the skin in the game; otherwise, the incentives can

be misaligned. With the development of the secondary loan market, intermediaries’ commitment

to loan retentions is limited: 60% of the loans are sold within one month after origination, and

nearly 90% are sold within one year (Drucker and Puri, 2009). This paper studies the equilibrium

dynamics in loan sales and monitoring when intermediaries cannot commit to their retentions. We

show that an appropriately-chosen liability structure is crucial in the alignment of banks’ incentives

for both monitoring and loan sales.

We build on the classic model of Holmstrom and Tirole (1997) in which banks can monitor

to increase an entrepreneur’s borrowing capacity. Being a credible monitor requires the bank to

retain a sufficient fraction of loans on its balance sheet. However, in the presence of the financial

market, the bank has incentives to sell its loans, due to its high cost of capital. The more it

sells, the less likely it will monitor, and the price of the loans will drop more as well. We study

two types of intermediary structures: certification and intermediation. As shown in Figure 1, in

certification, both the bank and investors directly invest in the borrower’s venture, and the role

of the bank is to certify that it will monitor. In intermediation, investors put their money in the

bank, and the bank then invests a collection of its own funds and those from investors into the

borrower’s venture. Although the two structures are equivalent in the static framework with the

bank’s commitment to its retention, without commitment they lead to very different dynamics in

loan sales and monitoring. In certification, the lack of commitment induces the bank to sell its

loans gradually, and the bank’s monitoring intensity declines over time. In intermediation, the

bank is able to issue short-term debt, which helps it commit to the retention and the decision to

monitor. As a result, an intermediating bank never sells its loans, and the entrepreneur is always

able to borrow more. However, even though the intermediation structure has a higher borrowing

capacity, the entrepreneur may still end up choosing certification. In other words, the structure

that maximizes borrowing may not be the one that maximizes the borrower’s expected payoff.

More specifically, we model an entrepreneur endowed with an investment opportunity, which

requires a fixed-size of investment and pays off some final cash flows at a random time in the future.

She has limited personal wealth and needs to borrow to make up the investment shortfall. Due to

moral hazard in effort choices, she can only pledge a fraction of the final output to outside creditors,

including banks and investors. Banks have a higher cost of capital, but only they can monitor to

reduce the entrepreneur’s private benefits. Although monitoring increases the project’s pledgeable
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Figure 1: Certification vs. Intermediation

income and enables the entrepreneur to borrow more, it also entails a physical cost. Therefore, a

credible monitor needs to retain a sufficient fraction of loans as its skin in the game.

We depart from Holmstrom and Tirole (1997) by introducing a competitive financial market,

in which the bank is allowed to trade its loans and issue short-term debt against the loans. Loans

are rationally priced, and therefore the prices depend on the bank’s incentives to monitor both

contemporaneously and in the future. If the bank has sold or is expected to sell a large fraction of

the loans, it will monitor less often, and consequently the price of loans will fall. This price impact

deters the bank from selling the loans too aggressively. We first illustrate the main insights in a

discrete-time model with four dates. Without the financial market, certification and intermediation

are equivalent because the bank holds the initial retention until the project matures. If the financial

market opens only once, we show again that the two structures are equivalent. Intuitively, the bank

can either sell the loans (as in certification) or issue debt against them (as in intermediation); both

reduce its skin in the game. If the financial market opens twice, however, this equivalence result

falls apart. Instead, the bank strictly prefers to issue short-term debt (as in intermediation) over

loan sales (as in certification). The reason is, investors who buy the loan when the financial market

opens for the first time are concerned about the bank’s loan sales and debt issuance policies when

the financial market opens again in the future. By contrast, the creditors who lend to the bank

via short-term debt are not as concerned; they will get fully repaid before the bank sells loans and

issues debt again when the market opens for the second time.

The discrete-time model does not allow us to study the full dynamics in loan sales and mon-
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itoring, as well as the associated welfare comparisons. By formulating the problem in continuous

time, we characterize the equilibrium and the related trading dynamics under both certification

and intermediation. In certification, the lack of commitment hurts the bank as in the standard

durable-goods monopoly problem (Coase, 1972; Fudenberg et al., 1985; Gul et al., 1986).1 In our

context, one can interpret the bank as the monopolist, and the durable goods as claims to the

cash flows of the entrepreneur’s project. Indeed, a certifying bank has incentives to sell the loans,

because its marginal valuation is below that of investors. After its initial loan sell, the bank has

incentives to keep selling to exploit the remaining gains of trade. The price of the loans drops

following the expectation that the bank will keep selling, reducing the likelihood of monitoring,

which in turn reduces the bank’s proceeds from selling. Hence, the bank trades off the immediate

trading gains versus the drop in its future payoff, including the drop in the loan’s valuation as well

as the decline in the expected payments it can collect upon project maturity. Similar to the result

in the Coase conjecture, the certifying bank does not benefit from its ability to trade loans at all.

By contrast, an intermediating bank does not have incentives to sell, due to its ability to issue

short-term debt that matures instantaneously. Indeed, when the bank has access to short-term

debt as a source of cheap financing, selling loans will not only depress the valuation of the loan, but

also increase the interest rate of short-term debt. The elevated interest rate acts as a mechanism

that deters the bank from selling. As a result, the bank finds it optimal to retain the entire loan

on its balance sheet even though it has not committed to doing so. The role of short-term debt as

a commitment device has been discovered by the previous literature (Calomiris and Kahn, 1991;

Diamond and Rajan, 2001); our channel is different, however. Whereas this literature emphasizes

the demandable feature of debt and the externalities from creditor runs, our result does not rely on

the first-come-first-serve constraint. Instead, our mechanism depends on the endogenous interest

rate as the discipline device. If the bank fails, all investors receive an equal amount and therefore

have no incentives to front run others.2 Our results are also related to Flannery (1994), who

emphasizes the timing between investment and debt issuance, and studies the impact on investment

distortions. In the context of a durable-goods monopoly, it is well-known that a monopolist can

overcome the commitment problem by renting the good, rather than selling it (Bulow, 1982).

1A similar problem arises when a borrower cannot commit to its debt level (Bulow and Rogoff, 1989; Bizer and
DeMarzo, 1992; Admati et al., 2018; DeMarzo and He, 2021), or when a large shareholder cannot commit to its
future stake (DeMarzo and Urošević, 2006). In traditional durable-goods monopoly and bargaining models, all trade
is immediate in the continuous-trading limit. However, Fuchs and Skrzypacz (2010) show the equilibrium can involve
delay with smooth trading when competitive buyers arrive over time, or when the production technology exhibits
increasing returns to scale.

2The commitment problem is also mitigated when claims are collateralized. Rampini and Viswanathan (2019)
emphasize the advantage of intermediaries in collateralizing claims. In their paper, certification and intermediation
are still equivalent.
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The short-term nature of the rental contract does not allow the monopolist to take advantage of

early buyers. Instead, any change in rental prices simultaneously affect all buyers, eliminating the

monopolist’s temptation to discriminate buyers over time. The associated commitment problem is

therefore resolved. In our context, an intermediating bank who issues short-term debt against the

project’s cash flows can be thought as a rentor of the claims. The short term nature of the contract

implies that any change in retention is immediately priced by all investors, which eliminates the

bank’s incentives to sell loans.

This distinction between certification and intermediation is related to an important externality

in bank monitoring. As in Diamond (1984), monitoring suffers from the free-rider problem in that

investors enjoy the benefits but do not share the cost with the bank. Therefore, the equilibrium

monitoring effort is too low. In certification, this externality leads to the bank reducing its probabil-

ity of monitoring over time. In intermediation, however, short-term debts help the bank internalize

the externalities. Indeed, because these short-term debts are fairly priced, the bank internalizes

the cost of monitoring. As a result, the bank and its investors share both the benefits and costs

of monitoring. Essentially, short-term debt creates a market for the monitoring services the bank

offers to be fairly priced, and the interest rate would have immediately increased, had the bank

sold its retention. Therefore, our paper emphasizes the importance of informed short-term debt in

disciplining the bank’s lack of commitment, which complements literature on the creation of safe

and uninformed deposits by banks for transactional and liquidity reasons (Dang et al., 2017). Some

recent findings on the capital structure of shadow banks (Jiang et al., 2020) document that they

rely on short-term debt offered by informed lenders. Therefore, the intermediation bank in our

model can be thought of as a shadow bank.

Next, we turn to the entrepreneur’s initial choice of the intermediary structure. We show that

if the entrepreneur’s net worth is high enough, she may end up choosing certification, even though

she borrows less. The reason is that intermediation can lead to too much monitoring (Pagano and

Röell, 1998). Intuitively, the entrepreneur cares about not only the value of the project, but also

her future benefits. The level of monitoring if the bank retains the entire loan may be excessive.

Although bank monitoring introduces a positive externality to investors, it also imposes a negative

externality to the entrepreneur by reducing her private benefits. This effect dominates if private

benefits are sufficiently large, which is why the entrepreneur prefers the certification structure. Our

result thus implies that entrepreneurs with higher private benefits – such as those value corporate

perks and enjoy control rents – tend to borrow from certifying banks, whereas entrepreneurs that

are more financially-constrained – such as small-business owners – prefer to rely on intermediation

banks.

Finally, we explore the impact of common policies designed to address the bank commitment
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problem. In particular, we look at the impact of a lock-up period and minimum retention levels.3

Although the qualitative nature of the equilibrium outcome remains unchanged, these policies

mitigate the commitment problem and allow the entrepreneur to borrow more upfront. Moreover,

if an intermediating bank’s liabilities have long maturity or are subsidized by the government, the

bank’s commitment to retention is also impaired.

2 The Model

Our model builds on the fixed-size investment setup in Holmstrom and Tirole (1997). A key

innovation is to introduce a competitive financial market in which the bank can trade its loans.

We assume the bank cannot commit to its loan retention, and thus the decisions to monitor. The

more it sells, the less likely it will monitor, and the loans will be valued lower as well.

2.1 Agents and Technology

Time is continuous and goes to infinity: t ∈ [0,∞). There are three groups of agents: one

entrepreneur (she) – the borrower; competitive intermediaries – banks; and investors. All agents

are risk neutral and have limited liabilities. The entrepreneur starts out with cash level A, whereas

banks and investors have deep pockets. We assume investors do not discount future cash flows,

whereas the entrepreneur and intermediaries discount the future at a rate ρ > 0. Investors in our

model should be interpreted as informed institutional investors such as sovereign wealth funds,

hedge funds, insurance companies, and cash-rich companies.

At time 0, the entrepreneur has access to a project that requires a fixed investment size I > A.

Thus, she needs to borrow at least I −A. The project matures at a random time τφ, which arrives

upon a Poisson event with intensity φ > 0. Define Φ = φ
ρ+φ

as the effective time discount the

entrepreneur and banks apply to the project’s final cash flows. At τφ, the project generates the

final cash flows R in the case of success and 0 in the case of failure. The probability of success is

pH if the entrepreneur works at τφ, and pL = pH − ∆ if she shirks. Two options of shirking are

available: the high option brings private benefit B, which exceeds b, the private benefit associated

with the low option. We assume the project’s expected payoff is always higher if the entrepreneur

works; that is, pHR > pLR+B.

3The Dodd-Frank Act imposes a minimum of 5% credit risk retention – known as the “risk-retention rule.” The
EU has had similar restrictions in place since 2019. However, the D.C. Circuit Court invalidated the risk-retention
rule for collateralized loan obligations (CLOs) in 2018.
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2.2 Monitoring, Financial Structures, and Contracts

A competitive set of banks are present at t = 0, and the entrepreneur enters into a contract

with one of them. Banks in the model should be broadly interpreted as any lender that is capable

of costly reducing the agency frictions. Note we do not allow for multiple banking relationships

to avoid duplication of monitoring efforts and the free-rider problem (Diamond, 1984). At τφ, the

project matures, and the bank can monitor to eliminate the high shirking option. To do so, it needs

to pay a private monitoring cost κ̃ > 0, where κ̃ ∈ [0, κ̄] has a distribution with F (·) and f (·) being

the cumulative distribution function (CDF) and probability density function (PDF), respectively.

The stochastic-cost assumption smooths bank’s equilibrium monitoring decisions, which become a

continuous function of its loan retention. Stochastic costs can be interpreted as variations in legal

and enforcement costs, or simply fluctuations in the costs of hiring loan officers.4 Figure 2 describes

the timing.

t = 0 τφ

Initial
Contract

Trading
(Short-term Debt Issuance)

- Monitoring cost κτφ is realized.

- Bank decides whether to monitor.

- The entrepreneur chooses to work or shirk.

- Cash flows are realized. Payments are settled.

Figure 2: Timing

We study two types of financial structures: certification and intermediation. In certification,

the bank puts its own funds in the entrepreneur’s venture to certify it will monitor, which then

attracts investors to directly invest in the venture as well. One example of this type of bank is

the lead investment bank in loan syndication. In certification, the entrepreneur directly signs the

initial contract with the bank and investors. Under limited liability, no agent receives anything if

the project fails. If the project succeeds, let Rf be the cash flows retained by the entrepreneur,

and Ro = R−Rf be the scheduled payments to outside creditors, namely, the bank and investors.

For the remainder of this paper, we also refer to Ro as loans.

In intermediation, investors do not directly invest in the entrepreneur’s project. Instead, they

4Two alternative formulations will generate results equivalent to that of a stochastic monitoring cost: The first is
to introduce a continuous distribution of private benefits, and the second one is to assume that monitoring is only
effective with some probability. This probability is assumed to vary continuously with the bank’s monitoring effort
(which is increasing in θ).
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invest in the bank, which in turn lends to the entrepreneur a collection of its own funds and the

money from investors.5 One example of this type of bank is a shadow bank which borrows short-

term debt from informed lenders. In intermediation, the entrepreneur signs an initial contract

with a bank and promises to repay the bank Ro if the project succeeds. The bank, in turn, offers

short-term debt contracts {Dt, yt} to investors over time, where Dt is the amount of debt and yt is

the associated interest rate. Below we sometimes refer to investors in the intermediation bank as

creditors. We model the short-term debt as one with instant maturity. Debt with instant maturity

is the continuous-time analogous to one-period debt in discrete time. Whenever the bank fails

to repay its creditors, the remaining loans are sold for repayments. For simplicity, we assume no

bankruptcy cost (or loss of charter value) is incurred if the bank fails, and a positive bankruptcy

cost will only quantitatively change the results.

Given that the entrepreneur has (weakly) the highest cost of capital among all the agents, she

should retain as little stake as possible. Therefore, in both certification and intermediation, it

is optimal to let the entrepreneur retain Rf = b/∆, which guarantees she will work if the bank

monitors. Therefore, Ro = R− b/∆. We put on hold the possibility of direct lending, in which case

the entrepreneur needs to retain B/∆ because there is no bank monitoring. The option of direct

lending will be studied when we explicitly compare the entrepreneur’s initial choice in subsection

4.4.

2.3 Trading and Pricing in the Financial Market

A competitive financial market opens in which loans can be traded.6 We normalize the total

share of loans outstanding to one and use θt to denote the bank’s retention at time t. In our

model, θt will be the payoff-relevant state variable. Sometimes θt is also referred to as the bank’s

skin in the game, which is publicly observable. Before trading starts, the bank’s initial retention is

θ0 ∈ [0, 1] in certification and θ0 = 1 in intermediation. We consider trading strategies that admit

both smooth and atomistic trading, as well as mixed strategies over the time of atomistic trades.

A Markov trading strategy is defined as (θt)t≥0 being a Markov process.

5The money from investors should not be interpreted as FDIC-insured deposits. Instead, it comes from investors
who are sensitive to new information regarding the bank’s underlying business. These investors put their money in
the bank in the form of short-term debt. In practice, one can interpret the short term debt as brokered deposits,
repurchase agreements, wholesale lending, and commercial papers. More broadly, they can be interpreted as “money-
market preferred stock”, which carries a floating dividend rate that is reset periodically to maintain the stock’s market
value at par. The distinction between equity and debt is unimportant in our setup when cash flows are binary with
one realization being zero. As we show below, the crucial feature is that current information about the bank promptly
becomes impounded into the rate it pays to capital suppliers.

6We assume the entrepreneur’s retention Rf is not tradable, or equivalently, the entrepreneur can commit to hold
onto Rf on the balance sheet.
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The price of loans depends on whether the entrepreneur works or shirks, which in turn depends

on the probability of bank monitoring. Conditional on the project maturing, let p (θ) be the

equilibrium probability of success; investors of the loan receive

d (θ) = p (θ)Ro (1)

per share. Let q (θ) be the price of the loan per share when θt = θ. In a competitive financial

market, the price is given by the expected present value of the asset:

q (θ) = E

[

d
(
θτφ
)
∣
∣
∣θt = θ

]

, (2)

where the expectation operator is taken with respect to the equilibrium path of {θs}t≤s≤τφ
.

The probability of success p (θ) will differ in certification and intermediation. Let κ be the

realization of the stochastic monitoring cost κ̃ at τφ. In certification, the bank with retention θ

chooses to monitor if and only if

pHθRo − κ ≥ pLθRo ⇒ κ ≤ κc := ∆Roθ, (3)

where ∆ := pH − pL. In intermediation, a bank with retention θ and short-term debt D monitors

if and only if

pH(θRo −D)− κ ≥ pL(θRo −D) ⇒ κ ≤ κi := ∆ (Roθ −D) . (4)

From now on, we use subscripts c and i to differentiate certification and intermediation.

For the rest of this paper, we restrict the (expected) monitoring cost to be sufficiently low.

Assumption 1.

∫ ∆R−b

0

κdF (κ) ≤ ΦF (∆R− b) (∆R− b)− (1− Φ) pL (∆R− b) .

This assumption leads to the following result. If the bank always retains the entire loan (i.e.,

θt ≡ 1, ∀t ≤ τφ), the bank’s payoff exceeds that if it immediately sells the entire loan and never

monitors. If this assumption is violated, bank monitoring is never needed in equilibrium.

3 An Illustrative Example

Before proceeding to the solution, we first present an example in the discrete-time framework

to illustrate the basic economic tradeoff and emphasize the importance of studying dynamics.
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With slight abuse of notation, let Φ be the one-period discount rate of the entrepreneur and the

bank. Investors do not discount the future. The model has a total of four dates: t = 0, 1, 2, 3. At

t = 0, the entrepreneur signs a contract with lenders, which specifies the bank’s retention θ0 and

the investors’ retention 1− θ0.

The project matures at t = 3, and its outcome depends on the entrepreneur’s effort just as

before. Specifically, the project produces R with probability pH if the entrepreneur works but with

probability pL = pH −∆ if the entrepreneur shirks. The two shirking options bring private benefits

B and b. Let Rf = b/∆ be the entrepreneur’s retention and Ro = R − Rf be the loans. The

financial market opens at t = 1 and t = 2, in which the bank can trade loans as well as issue debt.

Figure 3 describes the timing.

t = 0

Contract

t = 1

- Sell θ0 − θ1 loans

- Issue D1

t = 2

- Repay D1

- Sell θ1 − θ2 loans

- Issue D2

t = 3

Project pays off

Figure 3: Timing with three periods

Without the Financial Market. Let us first analyze the model without the financial market;

that is, neither loan trading nor short-term debt issuance is allowed at t = 1 or t = 2. As a result,

the bank and investors always retain their shares θ0 and 1−θ0 until t = 3, and the amount of short-

term debt outstanding satisfies D1 = D2 = 0. Given any θ0, the amount that the entrepreneur is

able to raise at t = 0 is

L(θ0) = Φ3

(

q(θ0)θ0 −

∫ ∆Roθ0

0
κdF (κ)

)

︸ ︷︷ ︸

bank’s lending

+ q(θ0)(1 − θ0)
︸ ︷︷ ︸

investors’ lending

,
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where q(θ0) = (pL + F (∆Roθ0)∆)Ro is the price of the loan under bank’s retention θ0. The

entrepreneur’s payoff is

max
θ0∈[0,1]

L(θ0)− (I −A)
︸ ︷︷ ︸

extra borrowing

+Φ3 (pL + F (∆Roθ0)∆)Rf
︸ ︷︷ ︸

payoff from project maturing

s.t. L(θ0) ≥ I −A

Let the optimal solution to the problem be θ∗0 and we focus below on the case L(θ∗0) > I −A.

Note that the optimal solution θ∗0 can be implemented via either certification or intermediation.

In certification, investors directly hold a share 1−θ∗0 of loans. In intermediation, investors put their

money in the bank, and the bank promises total repayments (1− θ∗0)Ro.

Financial market opens once. Now we analyze the model in which the financial market opens

once at t = 2. Therefore, the bank’s retention at the end of t = 1 (equivalently the beginning of

t = 2) equals θ1 = θ∗0. In the financial market at t = 2, the bank can either sell the loan θ1 − θ2 or

issue debt D2 against it. The bank’s payoff at t = 2 is

V̂2(θ2,D2, θ1) = Φ

(

p(θ2,D2)(θ2Ro −D2)−

∫ ∆(θ2Ro−D2)

0
κdF (κ)

)

︸ ︷︷ ︸

bank equity value

+ p(θ2,D2)D2
︸ ︷︷ ︸

debt issuance

+ q(θ2,D2)(θ1 − θ2)
︸ ︷︷ ︸

trading gains

.

The bank’s problem is

V2(θ1) = max
θ2∈[0,1],D2≥0

V̂2(θ2,D2, θ1)

s.t. D2 ≤ θ2Ro.

Note the issuance constraint D2 ≤ θ2Ro arises because otherwise the bank will immediately default:

it can never fully payoff the debt at t = 2. It is easily derived that ∂V̂2(θ2,D2,θ1)
∂θ2

= −Ro
∂V̂2(θ2,D2,θ1)

∂D2
.

Under the issuance constraint D2 ≤ θ2Ro, the choice between θ2 and D2 is undetermined. This re-

sult implies that if the financial market opens only once, loan sales and debt issuance are equivalent

to the bank. In that case, the liability structure of the bank is irrelevant, and the choice between

loan sales and debt issuance does not affect the bank’s final payoff. Intuitively, loan sales and debt

issuance are two equivalent approaches for the bank to reduces its skin in the game.

Financial market opens twice. Now we turn to the model in which the financial market opens

at both t = 1 and t = 2. The analysis at t = 2 stays unchanged from the one above, with the only
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minor distinction that the bank starts at t = 2 with retention θ1 that can differ from θ0 due to the

potential trading at t = 1. Therefore, it continues to hold that selling loans θ1 − θ2 and issuing

debt D2 are equivalent at t = 2.

Given any θ0, the bank’s payoff from loan trading and issuing one-period debt at t = 1 is

V̂1(θ1,D1, θ0) = D1 + q1(θ1,D1)(θ0 − θ1) + Φ (V2(θ1)−D1) .

Note that the one-period debt D1 will be paid with certainty at t = 2 and is therefore riskless.

Moreover, the price of the loan satisfies q1(θ1,D1) = q2(θ2(θ1),D2(θ1)), where θ2(θ1) and D2(θ1)

are the bank’s optimal decisions given θ1. The bank’s problem at t = 1 is

V1(θ0) = max
θ1∈[0,1],D1≥0

V̂1(θ1,D1, θ0)

s.t. D1 ≤ V2(θ1).

Once again, the issuance constraint D1 ≤ V2(θ1) arises because otherwise the bank will immediately

default. By formulating Lagrangian, we can show that the first-order conditions imply

θ1 = θ0

D1 = V2(θ1).

In contrast to the results at t = 2, loan sales and debt issuance are no longer equivalent at t = 1.

In fact, the bank chooses to not sell any loan but issues the maximum amount of short-term,

one-period debt against it. In other words, the bank prefers debt issuance strictly over loan sales.

Intuitively, this result holds because the buyers of the loan at t = 1 will only receive final payments

at t = 3, and the expected payments depend on the bank’s decisions of loan sales and debt issuance

at t = 2.7 By contrast, the creditors at t = 1 are not concerned by these decisions, because they

will get fully repaid before the bank sells and issues again at t = 2. This result implies that if a

bank can choose between certification and intermediation, it prefers the latter structure. In section

4, we further explore this comparison in the fully dynamic model. Note that debt D1 is assumed

to be one-period. The reason is, two-period debt is equivalent to loan sales and therefore would

be dominated by one-period debt. In general, long-term debt can be diluted (Admati et al., 2018;

Brunnermeier and Oehmke, 2013) and expecting so, creditors are only willing to pay a low price

for it. Therefore, it is dominated by one-period debt.

7These investors can also sell the loan at t = 2, but the price also depends on the bank’s selling and issuance
decisions at t = 2.
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Financial market without short-term debt issuance. Finally, let us study the model in

which the financial market opens at both dates but debt issuance is not allowed. This model will

map into the certification model analyzed later in section 4.1. Now that D2 = 0, for any given θ1,

there is a unique θ2 that maximizes the bank’s payoff. Moreover, we show both θ1 ≤ θ0 and θ2 ≤ θ1

hold in the appendix, so that the bank always sells the loan at both dates.

The next proposition summarizes the results in this section.

Proposition 1. The equilibrium in the model with four dates is as follows.

1. At t = 2, loan sales and debt issuance are equivalent to the bank; that is, given any θ1, there

is a continuum of θ2 and D2 that maximize the bank’s payoff at t = 2.

2. At t = 1, the bank strictly prefers issuing one-period debt to loan sales; that is, given any θ0,

θ1 = θ0 and D1 = V2(θ1).

3. If debt issuance is not allowed, i.e., D1 = D2 = 0, then the bank sells loans on both dates,

θ1 ≤ θ0 and θ2 ≤ θ1.

This four-date model has already introduced some interesting economic insights. For example,

loan sales and debt issuance are equivalent if the loan is known to mature in the next period. In

earlier periods, the ability to issue short-term debt motivates the bank to retain its loans. However,

this model has some unsatisfying features. For example, there is no explicit result on loan sales in

the case of certification (D1 = D2 = 0), so that we cannot analyze the dynamics of loan sales and

how it depends on primitive variables. Further, it is intractable to study a full-dynamic model in

discrete time that allows the bank to sell loans and issue one-period debt more than twice; that

is, if the financial market opens more than twice. The lack of explicit solution makes it difficult

to compare the welfare implications between certification and intermediation. Formulating the

problem in continuous time will allow for a clean characterization of the equilibrium and associated

trading dynamics.

Note that in this model, D1 is always risk-free, driven by the particular timing assumption

that the project never matures before t = 3. In the full-dynamic model, this assumption no longer

holds, and D1 is no longer riskless. But the results on trading, short-term debt issuance, and the

distinction between certification and intermediation stay largely unchanged. One different result

is trading under intermediation, where we show the bank may want to buy loans; that is, θ1 > θ0.

The reason is, when short-term debt is no longer riskless, buying back loans actually reduces the

risk premium paid on the debt.

Flannery (1994) presents a model where liabilities and asset mature at the same time, and a

one-time investment opportunity arrives before the final maturing date. The paper shows that
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shareholders of a levered firm may distort investment decisions, and short-term debt is proposed

as a mechanism to mitigate the distortions. Indeed, distortions can be eliminated if debt is issued

after the investment is made, in contrast to the Myers (1977) mechanism whereby debt is issued

before investment. In Flannery (1994), the notion of maturity is not explicitly specified. Instead,

the main driving force is the relative timing between debt issuance and investment opportunity.

By contrast, the mechanism in our model relies crucially on the mismatch of liabilities and assets.

At t = 1, the loan matures in two periods, whereas short-term debt matures in one period. the

maturity mismatch renders these two different. At t = 2, when both assets and liabilities have the

same remaining maturities, loan sales and debt issuance become equivalent.

Moreover, the result that short-term debt could help with the commitment problem has been in-

troduced in Calomiris and Kahn (1991), Diamond and Rajan (2001), and Diamond (2004). Whereas

the mechanism of these papers relies on the demandable feature of deposits and run externalities,

the channel in our paper is different. In particular, the bank retention choice directly affects the

cost (and also the amount) of short-term debt. The interest rates enable the bank to internalize

the externalities, such that monitoring is “awarded” in the form of cheaper debt.

4 Equilibrium of the Dynamic Model

In this section, we solve the model presented in section 2. Subsections 4.1 and 4.2 respectively

define and derive the certification and intermediation equilibrium. Our focus is on how the bank’s

equilibrium trading behavior interacts with its monitoring decisions. In subsection 4.3, we compare

the two equilibria and present the constrained-efficient solution. Subsection 4.4 presents a special

case in which the monitoring cost κ̃ follows the uniform distribution and pL = 0, where we obtain

closed-form solutions in primitives. The entrepreneur’s initial choices are then derived by comparing

the two equilibria.

4.1 Certification Equilibrium

If the project matures at time t, the bank’s expected payoff is

πc (θ) = pc (θ)Roθ −

∫ κc

0
κdF (κ) , (5)

where the project succeeds with probability

pc (θ) := pL + F (κc)∆, (6)
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upon which the bank receives Roθ. Let G (θ) be the bank’s instant trading gains. In the case

of continuous trading, dG (θ) = −q (θ) θ̇dt. In the case of atomistic trading, the bank’s holding

jumps to θ+ and the associated trading gain is dG (θ) = q (θ+) (θ − θ+). Note that trading is

settled at price q (θ+) to reflect the price impact. The bank maximizes the sum of its payoff upon

the project’s maturation e−ρ(τφ−t)πc
(
θτφ
)
and the cumulative trading gains

∫ τφ
0 e−ρ(s−t)dG (θs).

Because τφ follows the exponential distribution, the maximization problem is equivalent to

max
{θt}t≥0

E

[∫ ∞

0

e−(ρ+φ)t

(

φπc (θt) dt+ dG (θt)

)]

, (7)

where the expectation operator allows for mixed strategies in {θt}. Let Vc be the entrepreneur’s

expected payoff. Specifically,

Vc = E

[∫ ∞

0
φe−(ρ+φ)t

{
1{κ≤κc}pHRf + 1{κ>κc}(pLRf +B)

}
dt

]

, (8)

where κ is the realization of κ̃. The expectation operator is taken with respect to the bank’s

equilibrium trading strategy, which involves mixed strategies. Intuitively, if the realized monitoring

cost is lower than the threshold κc defined in (3), the bank monitors, and the entrepreneur receives

pHRf in expectation. Otherwise, the bank chooses not to monitor, and the entrepreneur receives

the expected return pLRf together with the private benefits B.

We consider a Markov perfect equilibrium in which the state variable is the bank’s retention θ,

henceforth, the certification equilibrium.8

Definition 1. A certification equilibrium is a Markov perfect equilibrium consisting of a price

function q : [0, 1] → R+ and a trading strategy (θt)t≥0 that satisfy the following:

1. For all θ0 ∈ [0, 1], (θt)t≥0 is a Markov trading strategy with initial value θ0 that maximizes

(7).

2. For all θ ∈ [0, 1], the price q(θ) satisfies the break-even condition (2).

In general, the bank can trade loans smoothly or atomistically. We show both types of trading

8If {θt} is not restricted to the class of Markov processes, one may construct equilibria that are close to the
commitment solution. In the context of a durable-goods monopoly, Ausubel and Deneckere (1989) show that in the
no-gap case, non-Markov equilibria exist in which the seller can achieve payoffs close to the commitment solution.
The logic behind the construction is similar to the one in the folk theorem for repeated games. The no-gap case
corresponds to the version of our model under pL = 0. At θ = 0, the marginal valuation of investors coincides with
the bank’s under pL = 0.
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can occur in equilibrium. Let Πc (θ) be the bank’s value function with retention θ.9 In the smooth-

trading region, Πc (θ) satisfies the following Hamilton-Jacobi-Bellman (HJB) equation:

ρΠc (θ) = max
θ̇

φ

[

πc (θ)−Πc (θ)

]

+ θ̇

[

Π′
c (θ)− qc (θ)

]

. (9)

Whereas the left-hand side stands for the bank’s required return, the first term on the right-hand

side represents the event of the project maturing, in which case the bank receives πc (θ) defined

in (5). The second term captures the overall benefit of trading, which includes the change to the

bank’s continuation value as well as the trading gain. A necessary condition for smooth trading is

Π′
c (θ) = qc (θ) , (10)

so that the bank is indifferent between trading or not. In this case, the per-share trading gain qc (θ)

is offset by the drop in the bank’s continuation value Π′
c (θ). Substituting the indifference condition

(10) into (9), we immediately get that in the region of smooth trading,

Πc (θ) = Φπc (θ) . (11)

Note the bank value is equal to the payoff it receives conditional on the project maturing, times the

bank’s effective discount rate Φ = φ
ρ+φ

. Surprisingly, the bank does not benefit from its ability to

trade these loans in the financial market at all; its payoff is identical to the one if it retains θ until

the project finally matures at τφ. The observation that lack of commitment fully offsets the trading

gains has already been noted in previous models on bargaining (Fuchs and Skrzypacz, 2010; Daley

and Green, 2020) and in other corporate finance settings (DeMarzo and Urošević (2006) in the

context of trading by a large shareholder, and DeMarzo and He (2021) in the context of leverage

dynamics).

Even though the bank’s equilibrium payoff is identical to the one if it does not trade at all, it

does not imply the bank will not trade loans on the equilibrium path. In fact, the price of loans

following a no-trade strategy will be too high, which gives the bank strict incentives to sell. Indeed,

the bank sells the loans for two reasons. First, due to the higher cost of capital, the bank’s marginal

valuation is below that of investors. Second, after the initial sell and the reduction of retention, the

bank is willing to sell again because the price impact only accrues to a smaller number of shares.

Now, we characterize the bank’s equilibrium trading strategy, which comes from the determination

of the equilibrium loan prices. Because investors do not discount future cash flows, qc (θ) must

9A certifying bank does not issue debt, so there is no distinction between the bank value and the equity holder’s
value.
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satisfy the following asset-pricing equation whenever the bank trades smoothly:

0 = φ

[

dc (θ)− qc (θ)

]

+ θ̇q′c (θ) , (12)

where φ

[

dc (θ)− qc (θ)

]

resembles the dividend income and θ̇q′c (θ) the capital gain.10 Combining

(10), (11), and (12), and using the relation dc(θ) = π′
c(θ), one can derive the following dynamic

trading strategies in equilibrium:

θ̇ = −φ
(1− Φ)π′

c (θ)

Φπ′′
c (θ)

< 0. (13)

Clearly, in the smooth-trading region, the bank sells loans over time and its retentions declines

continuously, even though it is indifferent between selling the loan or not. Intuitively, the equilib-

rium loan price is forward-looking, and therefore takes into account the bank’s decisions regarding

future monitoring. To satisfy the bank’s indifference condition, the equilibrium price of the loan

cannot be too high. The only trading strategy consistent with this price requires the bank to sell

its loans over time.

So far, we have focused only on the case of smooth trading. Meanwhile, the bank also has the

option to sell an atom of loans. In general, the bank can sell either a fraction or all the remaining

loans. Lemma 4 in the appendix proves the bank will never sell a fraction. This result follows

the intuition in standard Coasian dynamic models. Atomic trading arises whenever the bank has

strict incentives to sell. If so, it prefers to sell as fast as possible. Given this result, we are left

to check when the bank decides to sell off all its retention at a price qc (0), where qc (0) = pLRo

is the per-share loan price without monitoring. Indeed, we show a unique θ∗ exists such that

θ∗qc (0) = Φπc (θ∗), and θ∗qc (0) < Φπc (θ∗) if and only if θ > θ∗. In other words, a unique cutoff θ∗

exists below which the bank finds it optimal to sell off all the remaining loans.

The final step in the equilibrium construction is to derive the trading strategy at θ = θ∗. First,

note the bank cannot hold onto the remaining loans forever, because the resulting loan price will be

too high to induce the bank to sell. The bank cannot sell smoothly either; shortly afterwards, the

bank will have strict incentives to sell off the rest of the loan. Suppose the bank sells off immediately

after θt reaches θ∗. The price of the loan will then experience a deterministic downward jump, which

is inconsistent with the asset-pricing equation (2). Mathematically, let T∗ := inf {t > 0 : θt = θ∗}:

whereas q(θT∗−) satisfies (10), the price at time T∗ would satisfy q(θT∗) = q (0) = pLRo. Therefore,

the equilibrium necessarily involves some delay before the entire selloff. The only (stationary)

10The terms without subscripts c have been defined in equations (1) and (2).
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trading strategy at θ∗ consistent with (2) is for the bank to adopt a mixed strategy:11 the bank

sells off all its remaining loans at τλ, which arrives upon a Poisson event at intensity λ that satisfies

qc(θ∗) = E
[
dc(θτφ)|θt = θ∗

]
=

λ

φ+ λ
dc(0) +

φ

φ+ λ
dc(θ∗).

Simple derivation shows λ is determined by

pL +
φ

λ+ φ
F (∆Roθ∗)∆ = Φ [pL + F (∆Roθ∗)∆] . (14)

Proposition 2 summarizes the previous discussion and describes the equilibrium outcome. The

formal proof requires verification that the bank’s trading strategy is optimal, which is supplemented

in the appendix using results from the theory of optimal control in stratified domains.12

Proposition 2 (Certification Equilibrium). A unique certification equilibrium exists. Given

the bank’s initial retention θ0, the bank sells its loans smoothly at a rate given by equation (13)

until T∗, after which it sells off its remaining loans at some Poisson rate λ that satisfies (14). The

equilibrium loan price is

qc(θt) =







Φ
(

pL + F (∆Roθt)∆
)

Ro t < T∗
(

pL + φ
λ+φ

F (∆Roθ∗)∆
)

Ro T∗ ≤ t < τλ

pLRo t ≥ τλ.

(15)

The contract that maximizes the initial borrowing amount has θ0 = 1, in which case the borrowing

amount is

Lc = Φπc (1) . (16)

A contract that has the entrepreneur borrow exclusively from the bank at t = 0 enables the

most upfront borrowing, even though bank capital is costly. Intuitively, under this contract, the

bank needs to spend the longest period to fully offload its loans. This result is in contrast to that

in Holmstrom and Tirole (1997), where the entrepreneur prefers to use as little bank capital as

possible, because bank capital is expensive. Our setup, however, contains an additional channel

11The delay can also be deterministic, but the equilibrium is no longer within the class of a Markov perfect
equilibrium. The equilibrium would also depend on the time since the bank’s retention reached θ∗. The price qt
would not be stationary, and it would depend on the trading history before time t.

12Due to the discontinuity in the price function qc(θ), the HJB equation (9) is discontinuous at θ∗. This technical
problem can be sidestepped using (discontinuous) viscosity solution methods.
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whereby higher bank retention slows down the bank’s selling process. The longer the bank takes

to sell off the entire loan, the more likely the bank will monitor, and the value of the loan is also

higher. This channel dominates the one from expensive bank capital.

In practice, a bank typically has multiple outstanding loan facilities to a single borrower (Term

Loan A, Term Loan B, and revolver). Therefore, one should interpret the unique loan in our

model as the combination of the bank’s credit exposure to a borrower. In that case, our model

predicts that a relationship bank without any commitment to retention will gradually reduce its

exposure and the skin in the game. As shown by Parlour and Winton (2013), loan sales can also

be interpreted as banks buying credit default swap (CDS) to lay off credit risks.

4.2 Intermediation Equilibrium

An intermediation bank has outstanding debt Dt = D at time t. If the project matures, the

bank’s expected payoff is

π̂i (θ,D) = p̂i (θ,D) (θRo −D)−

∫ κi

0
κdF (κ) , (17)

where the project succeeds with probability

p̂i (θ,D) := pL + F (κi)∆, (18)

at which time the bank’s equity holder receives max{θRo −D, 0}. Besides trading gains, an inter-

mediating bank also receives income from short-term debt issuance. In particular, the bank’s net

income from debt issuance at time t is dDt − ytDtdt, where

yt = ŷ (θt,Dt) = φ (1− p̂i(θt,Dt)) (19)

compensates the default risk borne by creditors.13 In intermediation, the bank trades loans and

issues short-term debt to maximize the the expected payoff upon the project maturing, together

13A heuristic derivation of (19) goes as follows. The approximate probability that the project matures over a period
of length dt is φdt, and the default probability is 1− p̂i(θt, Dt) within this period. Given there is zero recovery upon
default, the promised payoff to creditors 1 + ytdt needs to satisfy the break-even condition

1 = (1− φdt)(1 + ydt) + p̂iφdt(1 + ydt) + (1− p̂i)φdt× 0.

The expression for yt follows by ignoring higher-order terms (o(dt)).
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with the net income from short-term debt issuance and trading gains; that is,

max
{θt, Dt}

E

[∫ ∞

0

e−(ρ+φ)t

(

φπ̂i (θt,Dt) dt+ dDt − ŷ (θt,Dt)Dtdt+ dG (θt)

)]

. (20)

The choice of Dt in (20) is restricted by the bank’s limited liability, which imposes an issuance

constraint illustrated below in (21). Lemma 1 shows the choice of Dt is essentially a static decision.

Therefore, we can use θt as the state variable and suppress the problem’s dependence on Dt.

Lemma 1. The maximization problem (20) is equivalent to solving

φπi(θ) := max
D≤Πi(θ)

{

φ

[

p̂i(θ,D)θRo −

∫ κi

0
κdF (κ)

]

+ ρD

}

, (21)

where

Πi (θ) = E(θ,D) +D = max
(θt)t≥0

∫ ∞

0

E

[

e−(ρ+φ)t
(

φπi(θt)dt+ dG (θt)
)

|θ0 = θ,D0 = D
]

. (22)

Lemma 1 implies we can solve short-term debt issuance and loan trading separately. From

(21), we know the choice of D only involves static tradeoff. A higher D reduces the probability

of success p̂i (θ,D) (see equation (4) and (18)), thereby reducing the value of loans. On the other

hand, the term ρD shows that debt is a cheaper means of funding. Debt issuance is bounded by

the endogenous constraint D ≤ Πi (θ), which arises from the bank’s limited liability. Here, Πi (θ)

is the bank’s value function given its retention θ, which implicitly assumes debt issuance has been

chosen at the optimal level. Therefore, this constraint involves a fixed point for the value function

Πi (θ).
14 In (22), the left-hand side Πi (θ) includes E (θ,D), the value to the bank’s equity holders,

and D, the value to the creditors. One implication of Lemma 1 is that even though the bank’s

equity holders decide its trading strategy, maximizing the bank’s equity value E (θ,D) is equivalent

to maximizing the total bank value Πi (θ), because debt D is fairly priced. We use Vi to denote the

entrepreneur’s expected payoff in intermediation:

Vi = E

[∫ ∞

0
φe−(ρ+φ)t

{
1{κ≤κi}pHRf + 1{κ>κi}(pLRf +B)

}
dt

]

.

The expressions differs from (8) in that the threshold cost for monitoring is replaced by κi.

14Hu et al. (2021) use the same technique to reduce the problem into one-dimensional. A similar problem is
analyzed in Abel (2018). Note in the case the bank decides to sell off all its remaining loans, the amount of debt it
raises is zero.
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We look for a Markov perfect equilibrium in state variable θt, henceforth, the intermediation

equilibrium.

Definition 2. An intermediation equilibrium is a Markov perfect equilibrium consisting of a

price function q : [0, 1] → R+, a trading strategy (θt)t≥0, a debt-issuance policy D∗ : [0, 1] → R+,

and the interest-rate function y : [0, 1] → R+ that satisfy the following:

1. For all θ ∈ [0, 1], the debt-issuance policy D∗(θ) solves (21).

2. For all θ0 ∈ [0, 1], (θt)t≥0 is Markov trading strategy with initial value θ0 that maximizes (22).

3. For all θ ∈ [0, 1], the price q(θ) satisfies the break-even condition (2).

4. For all θ ∈ [0, 1], the interest rate y (θ) := ŷ (θ,D∗(θ)) satisfies (19).

The analysis of the intermediation equilibrium has two steps: debt issuance and loan trading.

4.2.1 Short-term Debt Issuance

Plugging (17) and (19) into (21) and dividing both sides by ρ + φ, the right-hand side of (21)

becomes:

V(D, θ) := Φ

[

p̂i (θ,D) θRo −

∫ κi

0
κdF (κ)

]

+ (1− Φ)D. (23)

We impose conditions (Assumption 2 in the appendix) such that V(D, θ) is concave in D. This

objective function includes several intuitive terms. The term in the bracket is the net payoff to the

bank and its creditors: with probability p̂i (θ,D), the project succeeds so that they receive θRo;
∫ κi

0 κdF (κ) is the expected monitoring cost. The last term in (23) is the value from issuing debt.

An increase in D reduces the bank’s monitoring incentive and therefore reduces the first term.

Meanwhile, an increase in D also reduces the bank’s funding cost and therefore increases the last

term. The optimal D is chosen to balance the two effects. However, note that the bank’s equity

holders’ limited liability constraint requires that for any θ, D ≤ Πi (θ). We have the following

result.

Meanwhile, Πi (θ) is the bank’s maximal value under retention θ, which has implicitly assumed

that debt issuance is optimally chosen. Therefore, solving for Πi(θ) is equivalent to looking for a

fixed-point in the constraint.

We have the following result on optimal short-term debt issuance.

Lemma 2. Let D∗ (θ) be the optimal choice of short-term debt. There exists a threshold where

D∗ (θ) = Πi(θ) if and only if θ falls below this threshold.
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According to Lemma 2, the equity holder’s limited liability constraint only binds when θ is low

but becomes slack when θ is high. When the constraint is slack, the bank finances the loan using

both short-term debt and bank capital. This result implies that higher levels of bank capital are

associated with more retention and thus more monitoring. Mehran and Thakor (2011) shows that

better-capitalized banks conduct more monitoring. Berger and Bouwman (2013) provide related

evidence.

4.2.2 Trading

Next, we turn to the maximization problem (22) and study how an intermediating bank trades

its loans over time under optimal short-term debt issuance D∗(θ). Following similar steps in the

certification equilibrium, the term θ̇ (Π′
i(θ)− qi(θ)) must vanish in the smooth-trading region, so

the bank’s continuation value satisfies the HJB equation:

ρΠi (θ) = φ

[

πi (θ)−Πi (θ)

]

, (24)

and the equilibrium price is determined by the indifference condition Π′
i (θ) = qi (θ). As in the

certification case, given qi (θ), the trading strategy follows from the asset-pricing equation

0 = φ

[

di (θ)− qi (θ)

]

+ θ̇q′i (θ) =⇒ θ̇ = −φ
di (θ)− qi (θ)

q′i (θ)
. (25)

We impose conditions (Assumption 2 in the appendix) such that πi(θ) is convex in θ. Applying the

envelope theorem in Milgrom and Segal (2002), we get

π′
i(θ) = di(θ) +

[

f (κi)
∂κi
∂θ

∆

]

D∗(θ) + z(θ)Π′
i(θ), (26)

where z(θ) is the Lagrange multiplier of the constraint D ≤ Πi(θ). The equilibrium trading rate

(derived using condition (43) in the appendix) is

θ̇ = φ
(1− Φ)(1− p (θ))Ro +Φz(θ) (Π′

i(θ)−Ro)

Φπ′′
i (θ)

. (27)

Lemma 3. For any θ, θ̇ > 0 holds under the optimal short-term debt issuance policy D (θ) = D∗ (θ).

Lemma 3 shows that in contrast to the certification equilibrium, a bank would prefer to buy

loans in the intermediation equilibrium. A comparison between (27) and (13) highlights a crucial

difference between the two implementation structures. In certification, the bank has incentives to
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sell because investors have a higher valuation of these loans. In intermediation, these incentives

disappear. In fact, the bank has incentives to increase its retentions. This distinction arises

because an intermediating bank issues short-term debt to finance its loans. To see this, compare

π′
c (θ) = dc(θ) with (26), which clearly shows an increase in θ leads to two additional benefits

in intermediation. The first benefit is characterized by the term
[

f (κi)
∂κi
∂θ

∆
]

D∗. Intuitively,

f (κi)
∂κi
∂θ

is the marginal effect of retention θ on the incremental probability of bank monitoring, so

that f (κi)
∂κi
∂θ

∆ is the incremental probability that debt will be repaid. Given that debt is valued

fairly, more retention enables the bank to issue cheaper debt. The second benefit is captured by

the last term z(θ)Π′
i(θ), which is only positive if D∗ (θ) = Πi(θ). Intuitively, an increase in θ

also relaxes the constraint on debt issuance. Therefore, more retention has an add-on benefit by

further allowing the bank to issue more debt. Note this second benefit disappears whenever the

debt-issuance constraint is slack, that is, z(θ) = 0. Even though the bank has a higher cost of

capital, the availability of cheap debt as a source of financing offers the bank sufficient incentives

to increase its retention. Recall that by definition, θ0 = 1 in intermediation. In equilibrium, the

bank never sells its loans and θt ≡ 1 for all t ≥ 0. In other words, an intermediating bank retains

the entire loan until the project matures.

Finally, to complete the characterization of the equilibrium, we consider the case in which the

bank trades an atom of loans. Following the same logic as in the certification equilibrium, we can

show a unique θ† exists such that the bank sells off all the remaining loans at price q (0) = pLRo

if θ < θ†. However, when θ = θ†, unlike in the certification equilibrium, the mixed strategy is no

longer needed. Instead, the bank chooses to buy the loan smoothly so that θ will increase above θ†.

Therefore, the price of the loan satisfies qi(θ†) = Φπ′(θ†).
15 The following proposition summarizes

the results.

Proposition 3 (Intermediation Equilibrium).

1. There exists an unique θ†. If θ ≥ θ†, the bank buys loans smoothly at the rate given by equation

(27), and the price of the loan satisfies qi (θ) = Φπ′
i (θ), where π′

i (θ) satisfies (26). If θ < θ†,

the bank sells off the rest of the loan immediately at the price qi (θ) = pLRo.

2. In the unique intermediation equilibrium where θ0 = 1, the bank holds θt = 1 until the

project matures, and maintains a constant debt level Dt = D∗(1). The equilibrium loan price

is qi(1) = Φπ′
i(1).

15Both in the case of certification and intermediation, the price function q(θ) is discontinuous. However, whereas in
certification the bank trades toward the discontinuity point (i.e., θ̇(θ∗+) < 0), in intermediation, the bank trades away
from the discontinuity point (i.e., θ̇(θ†+) > 0). The construction of the equilibrium (and the analysis of the bank’s
optimal control problem) is simpler in this latter case because the trajectory of θt does not “see” the discontinuity.
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Proposition 3 shows that an intermediation bank finds it optimal to retain the loan and issues

short-term debt against it. If, for some reason, the bank’s retention fell below one, the intermedi-

ating bank would buy the loan back from outside investors over time. In subsection 5.2, we show

that loan sales is equivalent to issuing outside equity so that one can alternatively interpret an

intermediating bank buying the loan as buying back shares from outside equity holders. The result

that banks buy back loans to increase retention could also be interpreted as banks issuing addi-

tional loans to the same borrower. Effectively, the bank has more exposures and skin in the game.

Regardless of the interpretation, the broader message is that the bank prefers issuing short-term

debt against the loan over directly selling it, because the former offers commitment on monitoring.

A crucial element behind the commitment is that lenders are informed and they would increase the

interest rate on the short term debt had the bank reduced its retention. Given so, the intermedia-

tion bank should not be interpreted as the traditional commercial banks which rely on uninformed

and insured retail deposits. Rather, this bank could be interpreted as institutions such as shadow

banks, asset-backed commercial paper conduits (ABCP Conduit) or structured investment vehicles

(SIV), which rely largely on short-term funding from institutional investors. As shown by Jiang

et al. (2020), shadow banks originate long-term loans by issuing short-term debt to a few informed

lenders.

4.3 Equilibria Comparison and Constrained Efficiency

Figure 4 compares the bank’s loan retention dynamics in certification (left) and intermediation

(right). In the certification equilibrium, the bank with retention θ0 first sells the loan smoothly.

After its retention θt reaches θ∗, the bank sells off the entire rest of the loan retention, following

a stochastic delay, and has zero retention afterwards. The pattern in the left panel illustrates this

retention dynamics. By contrast, an intermediation bank starts with θ0 = 1 and always retains the

loan until the project matures.

The different patterns in retention also imply that the expected monitoring intensity are different

in the two equilibria. Specifically, a comparison between the threshold monitoring costs κc in (3) and

κi in (4) show that under the same level of retention θ, an intermediating bank monitors less due to

its outstanding short-term debt D. Meanwhile, an intermediating bank also has a higher retention

level θt, so that the overall comparison of monitoring is ambiguous. Figure 5 plots the monitoring

threshold κc (θt) and κi (θt) when the bank retains the entire loan at t = 0, i.e., θ0 = 1 in both cases.

A higher threshold is associated with a higher probability of monitoring if the project matures at

time t. Early on, the threshold κc is higher, implying that the certification bank monitors more if

the loan matures. Eventually, κc falls below κi, implying that the certification bank monitors less

if the loan matures relatively late. Therefore, our model predicts that a certifying bank conducts
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Figure 4: Retention Patterns

more monitoring during the early stage of the loan compared to an intermediating bank, and the

reverse is true during the later stage.

T∗

κc (θ∗)

κi (1)

κc (1)

t

κ

κc (θt)

κi (θt)

Figure 5: Threshold Monitoring Cost

What are the fundamental mechanisms behind the difference in retention and monitoring dy-

namics between the two structures? Monitoring has the property of a public good in the sense
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that investors can free ride the bank. All creditors commonly share the benefits from monitor-

ing, whereas the bank exclusively bears the cost. Therefore, the equilibrium monitoring effort is

inefficiently low, and in a dynamic framework with certification, the bank reduces its probabil-

ity of monitoring over time. Price impacts deter the bank from selling the loan too fast and too

aggressively.

In intermediation, the role of short-term debt is to help the bank internalize the externality

from monitoring. Indeed, the debt is fairly priced and reflects the probability of monitoring. The

proceeds that the bank receives from debt issuance thus compensates its cost incurred during mon-

itoring. In this case, the bank and its creditors share both the benefits and costs of monitoring.

Essentially, short-term debt creates a market for the services offered by the bank, that is, moni-

toring, to be fairly priced. This argument also explains the importance of short-term debt to align

the bank’s incentive in monitoring. Indeed, in the case of instantly maturing debt, the value and

the issuance of debt are continuously adjusted without any friction. Note that Calomiris and Kahn

(1991) and Diamond and Rajan (2001) also emphasize the role of short-term debt in commitment,

the mechanism of these papers relies on the demandable feature of deposits and run externali-

ties. By contrast, the channel in our paper is fundamentally different and depends on the pricing

mechanism whereby the bank’s retention choice directly affects the cost (and also the amount) of

short-term debt. More broadly, our paper emphasizes the complementarity between loan retention

and debt issuance. We offer another mechanism whereby the asset side of banks is closely linked to

the liability side. In contrast with others in the literature (Kashyap et al., 2002; Diamond, 1984;

Dang et al., 2017), our mechanism is dynamic and highlights the repricing role of short-term debt.

In contrast with Dang et al. (2017), we emphasize the role of informed creditors in disciplining

banks when banks have limited commitment.

4.3.1 The Constrained Social Planner’s Problem

Before comparing the welfare implications of the two structures, let us study the constrained-

efficient allocation. The social planner chooses the bank’s retention {θt}t≥0 to maximize the aggre-

gate social welfare, subject to the constraint that the bank decides whether to monitor given its

retention. Under the commitment to {θt}t≥0, the choices of debt Dt is redundant, since creditors

can directly invest in the loan.

Proposition 4 (Constrained Social Planner’s Problem). A social planner subject to constraint (3)
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chooses {θt}t≥0 to maximize the social welfare:

W = max
(θt)t≥0

∫ ∞

0
φe−φt

{

(
1− e−ρt

)
(1− θt)d (θt)

+ e−ρt

[

p(θt)R+ (1− F (∆Roθt))B −

∫ ∆Roθt

0
κdF (κ)

]}

dt. (28)

The optimal retention always satisfies θt < 1.

Due to differences in time discounting, the flow payoff in (28) is a weighted sum of the payoff to

investors ((1−θt)d (θt)) and the payoff to the bank and the entrepreneur. The project succeeds with

probability p(θt)R, and the entrepreneur shirks to receive the high private value B with probability

(1− F (∆Roθt)). Note that in this case, the optimal retention θt is essentially a static choice that

balances the benefits and costs of bank monitoring. Moreover, the difference in time discounting

makes this tradeoff time-varying, which implies the optimal retention is in general time-varying as

well.

4.4 A Special Case: Uniform Distribution

We present a special case of the model in which the monitoring cost κ̃ follows the uniform

distribution on [0, κ̄]. Under the uniform distribution, the marginal effect of retention θt on the

probability of monitoring is always a constant. Moreover, we assume the probability of success is

pL = 0 if the entrepreneur shirks. This assumption naturally leads to a result that the bank will

never sell off all its loans atomistically, because the resulting price will be zero.16 As a result, θ∗ = 0

and T∗ → ∞ in the certification equilibrium. Moreover, the constrained optimal solution becomes

θt =
1

2− e−ρt

[
(
1− e−ρt

)
+ e−ρt∆R−B

∆R− b

]

,

with θ0 = ∆R−B
∆R−b

and limt→∞ θt =
1
2 . Depending on the value of B relative to b, θt can be either

decreasing or increasing.

Next, we describe the certification and intermediation equilibrium and study the entrepreneur’s

choice between the two. In the case of certification, the uniform distribution implies the price of

the loan is linear in θ, and the bank’s payoff is quadratic in θ. For any initial θ0, the amount that

16In the durable-goods monopoly literature, this is referred to as the “no-gap” case.
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the entrepreneur can borrow at t = 0 is

Lc (θ0) = Φc(θ0) + pc(θ0)(1 − θ0) =
Φ

2κ̄
(∆Roθ0)

2 +
Φ

κ̄
(∆Ro)

2 θ0 (1− θ0) ,

and her payoff from the project maturing is

Vc (θ0) = ΦB −
Φ

2− Φ

∆Roθ0
κ̄

(B − b) .

The entrepreneur chooses θ0 to maximize her payoff Vc (θ0) + Lc(θ0), subject to the feasibility

constraint that Lc (θ0) ≥ I −A. Note that Lc(θ0) is increasing in θ0, so it is not feasible to finance

the project if Lc(1) < I − A. If Lc(1) ≥ I − A, we can solve for the optimal θ0 in closed form.

Specifically, the entrepreneur’s optimal choice is







θ∗0 if I −A ≤ Lc(θ
∗
0)

θmin
0 if I −A ∈ (Lc (θ

∗
0) , Lc (1)] ,

where θ∗0 = 1 − 1
2−Φ

B−b
∆Ro

and θmin
0 is the minimum value of θ0 satisfying the feasibility constraint

Lc (θ0) ≥ I−A. One interesting property of θ∗0 is that it decreases with B−b. Intuitively, this result

holds because bank monitoring imposes negative externalities on the entrepreneur by reducing her

private benefits. This result becomes crucial when we compare the two equilibria later.

In the case of intermediation, the uniform distribution leads to a result that the optimal amount

of short-term debt without the issuance constraint D ≤ Πi(θ) is a constant 1−Φ
Φ

κ̄
∆2 . We can show

that the issuance constraint is slack if Φ is sufficiently high. Intuitively, a high Φ implies the bank

has a relatively low cost of capital; that is, ρ is sufficiently low.17 Otherwise, the bank’s cost of

capital is too high compared to that of investors, so that it will issue short-term debt up to the

level constrained by its limited liability. Given that θt ≡ θ0 = 1 in the intermediation equilibrium,

the amount that the entrepreneur is able to borrow at t = 0 is

Li (1) = Πi(1) = Φ
∆2
[

R2
o − (D∗(1))2

]

2κ̄
+ (1− Φ)D∗(1),

17The optimal debt issuance is

D
∗(θ) = min

{

1− Φ

Φ

κ̄

∆2
,

√

(

κ̄

∆2

)2

+ (Roθ)
2 −

κ̄

∆2

}

.

The constraint in debt issuance binds at θ = 1 if and only if Φ <

√

(κ̄/∆2)2

R2
o+(κ̄/∆2)2
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and her payoff from the project maturing is

Vi = ΦB − Φ
∆(Ro −D∗(1))

κ̄
(B − b) .

Initial Choice

How does the entrepreneur choose between certification and intermediation? First, note that the

entrepreneur is always able to borrow more in intermediation. Therefore, if I−A ∈ (Lc (1) , Li (1)),

only intermediation is feasible to the entrepreneur. For the remainder of this subsection, we focus

on the more interesting case that both financing structures are feasible; that is, I − A < Lc (θ
∗
0).

Our next result shows that the entrepreneur prefers certification to intermediation if and only if

the private benefit without monitoring is sufficiently high.

Proposition 5. Under uniform distribution and pL = 0, a threshold B∗ exists. If Lc (θ
∗
0) > I −A,

then Vc(θ
∗
0)+Lc(θ

∗
0) ≥ Vi+Li(1) if and only if B > B∗; that is, the entrepreneur prefers certification

to intermediation if and only if B > B∗.

Let us offer some explanations to this result. Because the entrepreneur is always able to borrow

more under intermediation, the only reason why she may still prefer certification is that she receives

a higher payoff from the project maturing; that is, Vc (θ
∗
0) > Vi. Simple calculation shows that

Vc(θ
∗
0)− Vi = Φ

∆

κ̄
(B − b)

[

Ro

(

1−
1

2−Φ
θ∗0

)

−D∗(1)

]

.

The first term Ro

(

1− 1
2−Φθ

∗
0

)

captures the additional benefit that the entrepreneur is able to

receive due to the gradual reduction in monitoring in the case of certification. The second term,

D∗(1), captures the reduction in the intermediating bank monitoring caused by debt. Clearly,

Vc(θ
∗
0) > Vi if and only if

Ro

(

1−
1

2− Φ
θ∗0

)

> D∗(1),

which is necessarily the case if ρ, θ∗0, and D∗ (1) are small. Conditional on Vc > Vi, a higher B leads

to a larger difference in the entrepreneur’s payoff. If the difference becomes sufficiently large, it

can offset the difference in the amount of borrowing, Li (1)−Lc (θ0). In this case, the entrepreneur

ends up choosing certification.

The previous result is reminiscent of previous work in corporate governance that consider the

potential of over-monitoring by large shareholders (Pagano and Röell, 1998).18 From the perspective

18See section 9.2.2 in Tirole (2010) for a summary of this literature.
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of the entrepreneur, she cares not only about the market value of the project, but also her future

benefits as the manager. Therefore, a level of monitoring that maximizes the firm value may be

excessive to the entrepreneur. While bank monitoring introduces a positive externality to investors,

it also imposes a negative externality on the entrepreneur by restricting her from choosing the

high private benefit B. Our result implies more financially-constrained entrepreneurs borrows from

intermediating banks, whereas entrepreneurs with more net worth and who potentially enjoy higher

private benefits (or control rents) tend to borrow from certifying banks.

One may wonder whether the entrepreneur may benefit by simultaneously borrowing from both

an intermediating bank and investors; that is, θ0 ∈ (0, 1) in the intermediation setup. The answer is

yes. In some situations, the constrained-optimal allocation features the bank’s retention θt increas-

ing over time. One example is given by the solution to the planner’s problem when θ0 =
∆R−B
∆R−b

< 1
2 .

This solution can be better approximated by combining certification and intermediation, in which

the bank buys loans over time.

Numerical Example We illustrate the comparison using the following numerical example. Let

φ = 1, b = 0, R = 2, pH = 0.8, pL = 0, ρ = 0.01, and κ follow the uniform distribution on [0, 2].

Under given parameters, we can get that D∗ (1) = 0.0312, Πi (1) = 0.3122, and κi = 1.5750. We

also include the option of directly borrowing from investors, in which case the payoffs are Vd = ΦB,

Ld = pHR−B, and Wd = pHR− (1−Φ)B.
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Figure 6: Valuation under Certification, Intermediation, and Direct Lending

Figure 6 illustrates the payoffs when the private benefit B varies. The red (solid), blue (dashed),

and black (dotted) lines, respectively, stand for certification, intermediation, and directly lending.

The left panel describes the entrepreneur’s payoff, which increases with B in all three cases. The

entrepreneur always obtains the highest payoff in direct lending. This result illustrates the negative

externalities of bank monitoring on the entrepreneur. Moreover, her payoff is convex in B in certi-

fication but linear in intermediation. The middle panel shows the maximum amount of borrowing,

30



which is independent of B in intermediation but decreases in the other two cases, because θt ≡ 1 in

intermediation but θt declines in certification. Finally, the right panel compares the overall payoff.

Clearly, certification has a higher overall payoff than intermediation once B becomes sufficiently

high.

Bank’s choice between certification and intermediation. We have studied the entrepreneur’s

choice between the two structures. What are the banks’ incentives to choose between the two

structures? Do banks always choose to issue short-term debt as in intermediation if they have no

commitment of doing so? For any θ0 chosen by the entrepreneur, a certifying bank’s payoff Πc(θ0)

always falls below an intermediating bank’s payoff Πi(θ0). Therefore, a bank will always choose to

issue short-term debt if it has the option to do so. This result holds in the general model when the

monitoring cost κ̃ no longer follows the uniform distribution and pL > 0.

5 Extensions

5.1 Certification: Lockup Period and Minimum Retention

Lockup Period

We introduce a lockup arrangement that allows the bank to commit to θ0 for a period [0, tℓ].

Due to the stationary environment, the subgame starting from tℓ and the associated equilibrium

are unchanged from those in 4.1. Between [0, tℓ], no trading occurs, and the bank’s flow payoff is

φπc (θ0). Let Lℓ be the total lending at t = 0,

Lℓ = Πc (θ0) + (1− θ0)
[

dc (θ0)
(

1− e−φtℓ
)

+ e−φtℓqc (θ0)
]

.

Again, this expression confirms the earlier result that due to the lack of commitment, the certifying

bank does not benefit from its ability to trade loans at all: it is able to lend exactly Πc (θ0)

regardless of tℓ. Meanwhile, investors are willing to lend more as the lockup period tℓ becomes

longer, because qc (θ0) = Φdc (θ0). Therefore,
∂Lℓ
∂tℓ

> 0 so that the lockup period increases the total

amount of lending: the incremental lending comes from investors’ willingness to lend due to the

bank’s commitment during [0, tℓ]. Moreover, we use Vℓ to denote the entrepreneur’s overall payoff.

Under uniform distribution and pL = 0,

Vℓ = Φ

[
∆Roθ0

κ̄
b+

(

1−
∆Roθ0

κ̄

)

B

](

1− e−(ρ+φ)tℓ
)

+ e−(ρ+φ)tℓVc (θ0) .
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Intuitively, during the lockup period [0, tℓ], the entrepreneur is monitored and receives b = ∆ · Rf

with probability ∆Roθ0/κ̄; otherwise, she receives B. It is easily derived that ∂Vℓ
∂tℓ

< 0, so that

a longer lockup period leads to a lower payoff to the entrepreneur. Intuitively, the entrepreneur

receives b with monitoring but B without monitoring. Although a longer lockup period increases

monitoring, it also reduces the entrepreneur’s equilibrium payoff.

Let Wℓ = Vℓ + Lℓ be the aggregate payoff, which is also the objective function that the en-

trepreneur tries to maximize at t = 0. Under uniform distribution and pL = 0, a longer lock-up

period always increases the aggregate social welfare.

Corollary 1 (Optimal Lockup Period). Given the optimal initial loan retention, θ0 = θ∗0, the

aggregate social welfare attains the maximum as tℓ → ∞.

Minimum Retention

According to section 941 of the Dodd-Frank Act, securitizers are required to retain no less than

5% of the credit risks associated with any securitization to perform intermediation services. This

rule is commonly known as risk retention. In February 2018, the circuit court exempted CLO funds,

We evaluate such a policy by imposing a minimum retention requirement on the bank.19

Suppose the bank must hold at least a fraction
¯
θ of the loans on its balance sheet. The

equilibrium is qualitatively similar to the one in Proposition 2: some threshold θ̃ exists such that

smooth trading occurs for θ ∈ (θ̃, 1], and an atom θ̃ exists where the holdings jump to
¯
θ. For the

same reasons that liquidation has to be random in the certification case, the jump from θ̃ to
¯
θ must

also happen with a random delay.

The construction of the equilibrium is similar to the one without minimum retention, with

details available in the appendix. The only difference is that we need to consider the incentives to

jump to the constant
¯
θ rather than the incentives to sell off the entire loan (i.e., to jump to θ = 0).

5.2 Intermediation: Alternative Bank Liability Structures

In this subsection, we study the intermediation equilibrium under alternative liability structures.

This exercise highlights the crucial feature of short-term debt: that the interest rate can adjust as

soon as the bank changes its retention, to reflect the credit risks borne by creditors. Specifically,

we are going to show that the bank’s commitment to retention will no longer hold under long-term

debt, nor under debt that is sufficiently subsidized (such as FDIC-insured deposits).

19Securitization is identical to loan sales in our setup, given the binary outcome of the final cash flows.
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Long-term Debt/Outside Equity

We solve the intermediation equilibrium in which the bank can issue only long-term debt at

t = 0, that is, debt that only matures with the project at τφ. Given that the final cash flow has

a binary outcome of either R or 0, long-term debt is identical to outside equity. Let D0 = D be

the amount of long-term debt that the bank issues at t = 0. Note that after t = 0, the bank can

no longer raise any further debt. The definitions for κi, p̂i (θ,D), and π̂i (θ,D) follow from those

earlier. Because D0 = D is only chosen at t = 0, we suppress these functions’ dependence on

D, and therefore refer to κi (θ), p (θ), and πi (θ), respectively. The bank’s maximization problem

becomes

max
{θt, D0}

(1− y0)D0 + E

[∫ ∞

0

e−(ρ+φ)t

(

φπi (θt) dt+ dG (θt)

)]

,

where y0 compensates the creditors for the default risk. Note that after t = 0, the bank only

chooses its trading strategy, and the solution method as well as the equilibrium outcomes naturally

follow the certification equilibrium in subsection 4.1. In fact, these two are identical because

creditors are effectively investors who directly lend to the entrepreneur.20 This extension highlights

the importance of short-term debt in commitment. Given this result, a certifying bank can be

equivalently understood as an intermediating bank but issues long-term debt.

Note that outside equity would be equivalent to short-term debt if the bank could commit

to always buying back all its equity and reissuing new ones. In that case, the bank would care

about the repricing of the entire equity when it chose loan sales. However, the limited commitment

also implies the bank cannot commit to buying back its entire equity stock all the time, whereas

short-term debt forces the bank to repay at each instant.

Debt Subsidies

Next, we introduce an extension where the interest rate of short-term debt is partially subsidized

by the government. One can think about this subsidy as either deposit insurance or the implicit

guarantee from a government bailout.21 We show that once the subsidy becomes sufficiently high,

20A subtle difference is that long-term creditors cannot trade their debt, whereas investors in certification can sell
the loans. However, given that in the certification equilibrium, the bank sells the loan (and, equivalently, investors
buy the loan) over time, this difference does not affect the result. In other words, in the equilibrium with long-term
debt, creditors buy loans in the secondary market after t = 0.

21In the U.S., deposit insurance takes the form of a maximum guaranteed amount that has been $250,000 since
2010. There is a one-to-one mapping between the maximum insurance amount and the parameter ξ introduced later
on. To see this, note one can think about the interest rate as yt = 0 for deposits below $250, 000 but following (19)
for deposits above the limit. Our parameter ξ captures the fraction of deposits that are above the limit.
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an intermediating bank can no longer commit to its retention but instead sells loans over time, just

as a certifying bank. This exercise highlights the importance of the interest rate in aligning the

bank’s incentives to commit to its retentions.

Specifically, we assume the bank only needs to pay a fraction ξ of the interest rate so that

equation (19) becomes

yt = φξ (1− p̂i (θ,D)) ,

where ξ ∈ (0, 1). The analysis follows that in subsection 4.2, in which short-term debt issuance and

trading are solved sequentially.

Proposition 6. A ξ† exists such that in the intermediation equilibrium, θ̇ < 0 if ξ < ξ† for θ

sufficiently large.

Intuitively, the bank no longer has the incentives to retain its loans if the short-term debt is

mostly subsidized by the government and when θt is high such that the debt-issuance constraint

is slack. If θt is low, this result is no longer true, because the debt-issuance constraint binds; that

is, D∗ (θ) = Πi (θ). In this case, the bank will have incentives to retain loans. The overall effect in

this case combines the two.

Bail-in vs. Bailout

Let us modify the model by assuming if the project fails and generates nothing, the bank is

able to pay the creditors up to X > 0. One can think about X as the level of the bank’s risk-

absorbing equity or the liquidity required to put aside in case of bank failure.22 The bank’s incentive

compatibility constraint in monitoring becomes κi = ∆(Roθ+X−D). Moreover, it is never optimal

for the bank to issue risk-less debt. In other words, the endogenous choice of debt always satisfies

D > X, with an interest rate ŷ(θ,D) = φ
(
1− p̂(θ,D−X)

) (
1− X

D

)
.23 The equilibrium in this case

is qualitatively unchanged from the intermediation equilibrium described in Proposition 3, instead

of the one in Proposition 6.

The difference between X and ξ can be interpreted as the bail-ins vs. bailouts. Once again,

this difference highlights the importance of monitoring externalities. When short-term debt is

22One example is the liquidity-coverage ratio (LCR).
23Following the same step as in the derivation of equation (23), we can write the bank’s payoff function in terms

of net debt D̃ ≡ D −X:

V(D̃, θ) := X + Φ

[

p̂i(θ, D̃)θRo −

∫ κ̃i

0

κdF (κ)

]

+ (1− Φ) D̃.
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subsidized, only a fraction of the externalities is internalized, so the bank’s incentives to monitor

are also reduced. In the extreme case where the interest rate is independent of the bank’s retention

(and therefore monitoring), the results go back to the case of certification. By contrast, if a bail-in

occurs and the bank compensates the creditors’ part of the losses (X/D) in the case of a bank

failure, the monitoring externalities are still internalized.

6 Discussion and Final Remarks

This paper develops a theory of intermediary financing when banks cannot commit to the

retentions on the balance sheet. Our main message is that the liability structure of the intermediary

has an impact on the dynamics of lending and monitoring. A (certifying) bank that finances using

long-term claims, such as long-term debt and equity, has incentives to sell loans over time, leading

to a gradual reduction in monitoring. By contrast, a (intermediating) bank that finances itself

issuing short-term debt does not have incentives to sell loans. As a result, certification is associated

with a lower amount of lending capacity compared to intermediation. However, the structure that

maximizes lending capacity may not be the one that also maximizes the entrepreneur’s expected

payoff. We show an entrepreneur with high net-worth chooses to borrow under certification if the

private benefits are sufficiently high. Certification has more monitoring during the early periods

after loan origination, whereas intermediation has more monitoring during the later periods.

Throughout the paper, we have made several simplifying assumption. First, we assume that the

project does not generate any interim cash flows, and that the entrepreneur’s effort and the bank’s

monitoring are only required when the project matures. However, due to the exponential arrival of

final cash flows, this model is equivalent to a model in which independent cash flows are generated

over time, and the levels of interim cash flows require continuous monitoring and entrepreneur

effort. Second, following Holmstrom and Tirole (1997), we assume that all projects financed by an

intermediary are perfectly correlated and thus abstract from bank’s ability to pooling assets and

diversify the risk (Diamond, 1984; DeMarzo, 2005). In the case of many loans, we can interpret the

monitoring decision as the bank’s investment in its monitoring technology (which mighty include the

adoption of advanced information technology, the hiring of qualified loan officers, a more efficient

internal governance, etc). Such investments improve the bank’s ability to control bank-specific risk

in its portfolio which cannot be eliminated by pooling securities and diversifying the bank’s loan

portfolio.

In our model, there is a crucial role for informed capital to monitor the bank’s balance sheet. It

is important though that this investors cannot write binding contracts based on their assessments

about the riskiness of the bank. As argued by Flannery (1994), banks specialize in financing non-
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marketable, informationally intensive assets, and the composition of these assets changes rapidly

with new business opportunities. As a result, these assets do not have contractible, easily described

risk properties. The net result is a dynamic asset portfolio in which important investment decisions

are made daily via new loan evaluations and renewal decision.

Our main focus has been on bank’s ex-post monitoring rather than ex-ante screening (Ramakr-

ishnan and Thakor, 1984). As shown by Parlour and Plantin (2008), the informational advantage

provided by screening leads to illiquidity in the secondary loan market. Hu and Varas (2021) shows

how zombie lending will emerge in this context when screening takes time, as a relationship bank

can signal through either dynamic retention or debt issuance.24 Given that our focus is on how

the bank’s liability structure enables commitment to retention, we chose to stay away from these

complications introduced by screening.

By focusing on Markov equilibria, we ignore the intermediary’s concern for reputation (see

Chemmanur and Fulghieri (1994b), Chemmanur and Fulghieri (1994a) and Winton and Yerramilli

(2021) for some work on the role of reputation concerns). While reputation does not directly affect

the return to monitoring in our model, it can have an important effect on the dynamics of loan sales.

In particular, one can construct an equilibrium in which the commitment problem is mitigated if

the intermediary has long-run reputation (see Ausubel and Deneckere (1989) for a study of the

impact of durable good monopolist’s reputation concerns).

24See Leland and Pyle (1977) and Ross (1977) for related issues in the static environment.
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Appendix

A Proof of Proposition 1 and Detailed Analysis of Section 3

Problem at t = 2 given any θ1

From

p2(θ2, D2) = pL +∆F (∆(θ2Ro −D2))

q2(θ2, D2) = p2(θ2, D2)Ro = [pL +∆F (∆(θ2Ro −D2))]Ro,

it is easily derived that ∂p(θ2,D2)
∂θ2

= −Ro
∂p(θ2,D2)

∂D2
holds. Therefore, we get

∂V̂2(θ2, D2, θ1)

∂θ2
= (Φ− 1)p2(θ2, D2)Ro +

∂p2(θ2, D2)

∂θ2
[Ro(θ1 − θ2) +D2]

∂V̂2(θ2, D2, θ1)

∂D2
= (1− Φ)p2(θ2, D2) +

∂p2(θ2, D2)

∂D2
[Ro(θ1 − θ2) +D2]

⇒
∂V̂2(θ2, D2, θ1)

∂θ2
= −Ro

∂V̂2(θ2, D2, θ1)

∂D2
.

By forming the Lagrangian of the bank’s problem, we get

∂L2

∂θ2
=

∂V̂2(θ2, D2, θ1)

∂θ2
+ η2Ro = 0

∂L2

∂θ2
=

∂V̂2(θ2, D2, θ1)

∂θ2
− η2 = 0,

where η2 is the Lagrange multiplier on the constraint D2 ≤ θ2Ro. It means for any (θ2, D2) that solves the

first F.O.C, it also solves the second one. Therefore, the choice of (θ2, D2) is undetermined. If we restrict

D2 = 0, then the F.O.C. implies

(1− Φ)p2(θ2, D2)Ro =
∂p2(θ2, D2)

∂θ2
Ro(θ1 − θ2).

Given ∂p2(θ2,D2)
∂θ2

> 0, θ2 < θ1. Note that there is no closed-form solution for θ2 as a function of θ1.

Problem at t = 1 given any θ0

We know

V̂1(θ1, D1, θ0) = D1 + q1(θ1, D1)(θ0 − θ1) + Φ (−D1 + V2(θ1)) .
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The bank’s problem at t = 1 is

max
θ1,D1

V̂1(θ1, D1, θ0)

s.t. D1 ≤ V2(θ1).

Let us form Lagrangian. We get

∂L1

∂D1
= 1− Φ− η1 = 0 ⇒ η1 = 1− Φ.

∂L1

∂θ1
= −q1(θ1, D1) +

∂q1(θ1, D1)

∂θ1
(θ0 − θ1) + (Φ + η)

∂V2(θ1)

∂θ1

= −q1(θ1, D1) +
∂q1(θ1, D1)

∂θ1
(θ0 − θ1) + (Φ + η)q2(θ2, D2)

= −q1(θ1, D1) +
∂q1(θ1, D1)

∂θ1
(θ0 − θ1) + (Φ + η)q1(θ1, D1)

=
∂q1(θ1, D1)

∂θ1
(θ0 − θ1),

where the second line follows envelope condition. From ∂L1

∂θ1
= 0, we know θ1 = θ0. Moreover, the result

η1 > 0 implies the constraint D1 ≤ V2(θ1) always binds. Therefore, given any θ0, it is always the case that

θ1 = θ0 and D1 = V1(θ1). Note that in contrast with the result at t = 2, loan sales and debt issuance are

not equivalent. The choice of θ1 and D1 is uniquely determined.

We can also restrict both D1 = 0 and D2 = 0, similar to certification. In this case, η1 = 0 and

∂L

∂θ1
= −q1(θ1, 0) +

∂q1(θ1, 0)

∂θ1
(θ0 − θ1) + Φq1(θ1, 0).

From ∂L
∂θ1

= 0, we get

∂q1(θ1, 0)

∂θ1
(θ0 − θ1) = (1− Φ)q1(θ1, 0) > 0,

where
∂q1(θ1, 0)

∂θ1
=

∂q2
∂θ2

∂θ2
∂θ1

= (Ro∆)
2
f (∆(θ2Ro))

∂θ2
∂θ1

.

It remains to derive the sign of ∂θ2
∂θ1

. Noticing that

∂V̂2(θ2, D2, θ1)

∂θ2
= (Φ− 1)p2(θ2, D2)Ro +

∂p2(θ2, D2)

∂θ2
[Ro(θ1 − θ2) +D2] ,

so
∂2V̂2(θ2, D2, θ1)

∂θ2∂θ1
=

∂p2(θ2, D2)

∂θ2
Ro > 0,

which means that V̂2(θ2, D2, θ1) satisfies the single crossing property in (θ1, θ2). It follows from the monotone

comparative results in Milgrom and Shannon (1994) that ∂θ2
∂θ1

≥ 0.
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Again, note that the closed-form solution for θ1 given any θ0 is not available.

B Certification

In this section, we prove Proposition 2.

Lemma 4. The bank with retention θ never sells a fraction of the loans.

Proof. Suppose the bank with retention θ sells θ+−θ, where θ+ > 0, and that after this it continuous trading

smoothly. Multiple jumps are ruled out without loss of generality. In this case, the overall trading gains are

dG (θ) +Πc (θ
+)−Πc (θ) = (θ − θ+) qc (θ

+) +Πc (θ
+)−Πc (θ), where dG (θ) is the instant trading gain and

Π (θ+)−Π(θ) are the gains (negative loss) in its continuation value. Block trading is suboptimal as long as

θ = argmax
θ+

{

Πc(θ
+) + (θ − θ+)qc(θ

+)
}

. (29)

It is easy to verify that the first order condition is always satisfied at θ+ = θ, thus it suffice to show that the

second order condition for global optimality is satisfied.

Verification of Optimality Trading Strategy

In this section, we complete the characterization of the equilibrium by verifying that the equilibrium

trading strategy maximizes the bank’s payoff given the price function q(θ). Because the payoff in a mixed

strategy equilibrium is given by the payoff of any pure strategy in its support, we can restrict attention to

pure strategies in the verification of optimality. A trading strategy for the bank is given by right continuous

function with left limits. A trading strategy is admissible if it can be decomposed as

θt =

∫ t

0

θ̇ctdt+
∑

k≥0

(θdtk − θdtk−),

for some bounded function θ̇ct . We denote the set of admissible trading strategies by Θ. The bank’s opti-

mization problem is to choose θ ∈ Θ to maximize its payoff

Π∗(θ0) = sup
θ∈Θ

∫ ∞

0

e−(ρ+φ)t
(
φπ(θt)− θ̇ctq(θt)

)
dt−

∑

k≥0

e−(ρ+φ)tkq(θtk)(θ
d
tk − θdtk−). (30)

Due to the discontinuity in the price price function q(θ), the Hamilton-Jacobi-Bellman (HJB) equation

is discontinuous at θ∗, so we need to resort to the theory of viscosity solutions for the analysis of the bank’s

problem. Our problem is a particular case of the general class of optimal control problems in stratified

domains studied by Barles et al. (2018). Our proof relies on their characterization of the value function

using viscosity solution methods. The analysis in Barles et al. (2018) does not consider the case in which

the trajectory of the state variable can be discontinuous (impulse control). However, as we show below, we

can approximate a trading θt ∈ Θ by an absolutely continuous trading strategy with derivative |θ̇t| ≤ N
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for some N large enough (the approximation is in the sense that it yields a similar payoff). Thus, we can

consider a sequence of optimization problems

Π∗
N (θ0) = sup

|θ̇t|≤N

∫ ∞

0

e−(ρ+φ)t
(
φπ(θt)− θ̇tq(θt)

)
dt, (31)

and verify that, for any θ ∈ [0, 1], Π∗
N (θ) → Π(θ), where

Π(θ) =







Φπ(θ) if θ ∈ [θ∗, 1]

q(0)θ if θ ∈ [0, θ∗)
.

The following Lemma establishes that we can indeed consider the limit of bounded absolutely continuous

strategies.

Lemma 5. For any θ0 ∈ [0, 1], limN→∞ Π∗
N (θ0) = Π∗(θ0).

Proof. Let θǫ∗t be and ǫ-optimal policy (at this point in the proof we have not established existence of an

optimal policy). For any k ≥ 0, let ∆k ≡ inf{∆ > 0 : θǫ∗tk−∆ + sgn(θǫ∗tk − θǫ∗tk−)N∆ = θǫ∗tk} (we can find ∆k if

N is large enough as |θ̇ǫc∗t | ≤ M for some finite M). Consider the policy θ̂Nt = θǫ∗t if t /∈ ∪k≥0(tk −∆k, tk),

and θ̂Nt = θǫ∗tk−∆k
+sgn(θǫ∗tk − θǫ∗tk−)N(t− tk +∆k) if t ∈ ∪k≥0(tk −∆k, tk). The difference between the payoff

of θǫ∗t and θ̂Nt is

Πǫ∗(θ0)− Π̂N =
∑

k≥0

{∫ tk

tk−∆k

e−(ρ+φ)t
(
φπ(θǫ∗t )− θ̇ǫc∗t q(θǫ∗t )− φπ(θ̂Nt )

)
dt

+

∫ tk

tk−∆k

e−(ρ+φ)tsgn(θǫ∗tk − θǫ∗tk−)Nq(θ̂Nt )dt− e−(ρ+φ)tkq(θǫ∗tk )(θ
ǫd∗
tk

− θǫd∗tk−
)

}

− ǫ

=
∑

k≥0

{∫ tk

tk−∆k

e−(ρ+φ)t
(
φπ(θ∗t )− θ̇ǫc∗t q(θ∗t )− φπ(θ̂Nt )

)
dt

+
θǫ∗tk − θǫ∗tk−∆k

∆k

∫ tk

tk−∆k

e−(ρ+φ)tq(θ̂Nt )dt− e−(ρ+φ)tkq(θǫ∗tk )(θ
ǫd∗
tk − θǫd∗tk−)

}

− ǫ.

For all k ≥ 0, we have that ∆k ↓ 0 as N → ∞. It follows that

lim
∆k↓0

1

∆k

∫ tk

tk−∆k

e−(ρ+φ)tq(θ̂Nt )dt =







e−(ρ+φ)tkq(θǫ∗tk−) if θǫ∗tk > θǫ∗tk−

e−(ρ+φ)tkq(θǫ∗tk+) if θǫ∗tk < θǫ∗tk−.

The price function is right continuous so q(θǫ∗tk+) = q(θǫ∗tk ). We can conclude that

lim
N→∞

(Πǫ∗(θ0)− Π̂N (θ0)) =
∑

k≥0

e−(ρ+φ)tk
(
q(0)− q(θ∗)

)
(θ∗tk − θ∗tk−)

+1{θ∗
tk

=θ∗} − ǫ ≤ 0.

Because this holds for any ǫ > 0, we can conclude that limN→∞(Π∗(θ0) − Π̂N (θ0)) ≤ 0, and given that
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Π∗(θ0) ≥ Π̂N (θ0), we get limN→∞ Π̂N (θ0) = Π∗(θ0). For N large enough, the policy θ̂Nt satisfies |
˙̂
θNt | ≤ N

(this can be guarantee because for any ǫ there is M such that |θ̇ǫc∗t | ≤ M), so its payoff, Π̂N (θ0) provides a

lower bound to Π∗
N (θ0), which means that limN→∞ Π∗

N (θ0) = Π∗(θ0).

This shows that the value function converges (pointwise) to the one in the equilibrium under considera-

tion. Hence, we can verify the optimality of the bank’s strategy by analyzing the control problem (31). For

future reference, recall that the price function in the control problem (31) is given by

q(θ) =







Φπ′(θ) if θ ≥ θ∗

pLR (1− α) if θ < θ∗
, (32)

where the threshold θ∗ is given by Φπ(θ∗) = q(0)θ∗. Notice that we are not computing the equilibrium

in a model in which the bank is restricted to use absolutely continuous trading strategies with bounded

derivative θ̇t, but rather considering the equilibrium price function in the general case, and then considering

a sequence of auxiliary optimization problems to construct the value function. Because the expected payoff

of the candidate equilibrium strategy is equal to the value function, it is necessarily optimal.

The Hamilton-Jacobi-Bellman equation (HJB) for the optimization problem (31) is

(ρ+ φ)ΠN (θ)−H(θ,Π′
N (θ)) = 0, (33)

where H

H(θ,Π′
N ) ≡ φπ(θ) + max

|θ̇|≤N

{

θ̇
(
Π′

N − q(θ)
)}

. (34)

We guess and verify that, for N large enough, the solution (in the viscosity sense) of the previous equation

is

ΠN (θ) =







Φπ(θ) if θ ∈ [θ∗, 1]

e−
ρ+φ
N

(θ∗−θ)Φπ(θ∗) +
(ρ+φ)

N

∫ θ∗
θ e−

ρ+φ
N

(y−θ)
(

Φπ(y)− N
ρ+φq(0)

)

dy if θ ∈ [θ̃N , θ∗)

N
ρ+φ

(

1− e−
(ρ+φ)

N
θ
)

q(0) + (ρ+φ)
N

∫ θ

0
e−

(ρ+φ)
N

(θ−y)Φπ(y)dy if θ ∈ [0, θ̃N ),

(35)

where θ̃N is the unique solution on [0, 1] to the equation

N

ρ+ φ

(

1− e−
(ρ+φ)

N
θ̃N
)

q(0) +
(ρ+ φ)

N

∫ θ̃N

0

e−
(ρ+φ)

N
(θ̃N−y)Φπ(y)dy =

e−
ρ+φ
N

(θ∗−θ̃N )Φπ(θ∗) +
(ρ+ φ)

N

∫ θ∗

θ̃N

e−
ρ+φ
N

(y−θ̃N )

(

Φπ(y)−
N

ρ+ φ
q(0)

)

dy (36)

B.1 Auxiliary Lemmas

Before proceeding with the verification theorem, we provide several Lemmas providing properties of our

candidate value function ΠN (θ) that will be later used in the verification

A5



Lemma 6. If Φπc (1) > pLRo > 0, then there exists a unique θ∗ ∈ (0, 1) solving the equation

θ∗qc (0) = Φπc (θ∗) (37)

If pL = 0, then θ∗ = 0 is the unique solution to (37) on [0, 1].

Proof. As Φπc(0) = 0, equation (37) is trivially satisfied at θ∗ = 0, we want to show that if Φπc (1) > pLRo =

qc(0), then there is a non trivial solution θ∗ > 0 that also satisfies equation (37). First, if Φπc (1) > pLRo,

then the right hand side of equation (37) is strictly larger than its left hand side evaluated at θ∗ = 1. Second,

as Φπ′
c(0) < qc(0) it follows that for ε small enough εqc (0) > Φπc (ε). Thus, it follows from continuity that

a non trivial solution exists on (0, 1). Uniqueness follows because

qc (0)− Φπ′
c (θ∗) =

Φπc (θ∗)

θ∗
− Φpc (θ∗)Ro

= Φ

[

pc (θ∗)Ro −
1

θ∗

∫ κc(θ∗)

0

κdF (κ)

]

− Φpc (θ∗)Ro < 0,

so the function θqc (0)− Φπc (θ) single crosses 0 from above, which implies θqc (0) > Φπc (θ) on θ ∈ (0, θ∗)

and θqc (0) < Φπc (θ) on θ ∈ (θ∗, 1]. Finally, if pL = 0, then Φπ′
c(0) = qc(0) = 0. It follows then from the

convexity of πc(θ) that θ∗ = 0 is a global maximum of θqc (0)−Φπc (θ), which means that θqc (0) < Φπc (θ)

for all θ > 0.

Lemma 7. There is a unique solution θ̃N ∈ (0, θ∗) to equation (36).

Proof. First, we show existence. Given the definition of θ∗ and the convexity of π(θ) we have that Φπ(θ) <

θq(0) for all θ < θ∗. Hence,

N

ρ+ φ

(

1− e−
(ρ+φ)

N
θ∗
)

q(0) +
(ρ+ φ)

N

∫ θ∗

0

e−
(ρ+φ)

N
(θ−y)Φπ(y)dy < Φπ(θ∗).

We also have that

e−
ρ+φ
N

θ∗Φπ(θ∗) +
(ρ+ φ)

N

∫ θ∗

0

e−
ρ+φ
N

y

(

Φπ(y)−
N

ρ+ φ
q(0)

)

dy ≤ Φπ(θ∗)−
N

(ρ+ φ)

(

1− e−
ρ+φ
N

θ∗
)

q(0)

≤ Φπ(θ∗)− θ∗q(0) = 0.

The existence of a solution follows from the intermediate value theorem. To show uniqueness we consider

the derivative of the difference between the left and the right hand sides of equation (36) evaluated at θ,

A6



which we denote by G′(θ).

G′(θ) = e−
(ρ+φ)

N
θq(0) +

(ρ+ φ)

N
Φπ(θ)−

(ρ+ φ)2

N2

∫ θ

0

e−
(ρ+φ)

N
(θ−y)Φπ(y)dy

−
(ρ+ φ)

N
e−

ρ+φ
N

(θ∗−θ)Φπ(θ∗) +
(ρ+ φ)

N

(

Φπ(θ)−
N

ρ+ φ
q(0)

)

−
(ρ+ φ)2

N2

∫ θ∗

θ

e−
ρ+φ
N

(y−θ)

(

Φπ(y)−
N

ρ+ φ
q(0)

)

dy

From here we get that

G′(θ∗) = −
(

1− e−
(ρ+φ)

N
θ∗
)

q(0)−
(ρ+ φ)2

N2

∫ θ∗

0

e−
(ρ+φ)

N
(θ∗−y)Φπ(y)dy +

(ρ+ φ)

N
Φπ(θ∗)

≤
(ρ+ φ)

N
(Φπ(θ∗)− θ∗q(0)) = 0

G′(0) = −
(ρ+ φ)

N
e−

ρ+φ
N

θ∗Φπ(θ∗)−
(ρ+ φ)2

N2

∫ θ∗

0

e−
ρ+φ
N

y

(

Φπ(y)−
N

ρ+ φ
q(0)

)

dy

≥ −
(ρ+ φ)

N
Φπ(θ∗) +

(

1− e−
ρ+φ
N

θ∗
)

q(0)

≥
(ρ+ φ)

N
(θ∗q(0)− Φπ(θ∗)) = 0

Moreover, we get that, for any θ ∈ (0, θ∗), G(θ) = 0 implies

G′(θ) =
2(ρ+ φ)

N

[

Φπ(θ)−

(

N

ρ+ φ

(

1− e−
(ρ+φ)

N
θ
)

q(0) +
(ρ+ φ)

N

∫ θ

0

e−
(ρ+φ)

N
(θ−y)Φπ(y)dy

)]

≤
2(ρ+ φ)

N
[Φπ(θ) − θq(0)] < 0.

It follows that G(θ) single crosses 0, so there is a unique solution to the equation G(θ) = 0.

Lemma 8. There is Ñ such that, for all N > Ñ , Π′
N (θ) < q(0) on (0, θ̃N) and Π′

N (θ) > q(0) on (θ̃N , θ∗).

Proof. First, we very that Π′
N (θ) < q(0) on (0, θ̃N ). The derivative of ΠN (θ)− θq(0) on (0, θ̃N) is given by

Π′
N (θ)− q(0) =

ρ+ φ

N
Φπ(θ)−

(

1− e−
(ρ+φ)

N
θ
)

q(0)−
(ρ+ φ)2

N2

∫ θ

0

e−
(ρ+φ)

N
(θ−y)Φπ(y)dy

≤
ρ+ φ

N
Φπ(θ)−

(

1− e−
(ρ+φ)

N
θ
)

q(0) ≤
ρ+ φ

N
(Φπ(θ)− θq(0)) < 0.

The derivative of ΠN (θ)− θq(0) on (θ̃N , θ∗) is given by

Π′
N (θ)− q(0) =

ρ+ φ

N

[

e−
ρ+φ
N

(θ∗−θ)Φπ(θ∗)− Φπ(θ) +
(ρ+ φ)

N

∫ θ∗

θ

e−
ρ+φ
N

(y−θ)

(

Φπ(y)−
N

ρ+ φ
q(0)

)

dy

]
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Differentiating the HJB equation we get that

Π′′
N (θ) =

(ρ+ φ)

N
(Π′

N (θ) − Φπ′(θ))

Π
′′′

N (θ) =
(ρ+ φ)

N
(Π′′

N (θ) − Φπ′′(θ)) .

From here we get that Π′′
N (θ) = 0 =⇒ Π′′′

N (θ) < 0, so we the function Π′
N (θ) is quasi-concave on (θ̃N , θ∗).

Moreover, Π′
N (θ∗−) = q(0), and

Π′
N (θ̃N+) = q(0) +

(ρ+ φ)

N

(

ΠN (θ̃N+)− Φπ(θ̃N )
)

> q(0),

so we can conclude that Π′
N (θ) > q(0) on (θ̃N , θ∗) as long as ΠN (θ̃N+) > Φπ(θ̃N ), which follows from

ΠN (θ̃N+)− Φπ(θ̃N ) = ΠN (θ̃N−)− Φπ(θ̃N )

=
N

ρ+ φ

(

1− e−
(ρ+φ)

N
θ̃N
)

q(0)− Φπ(θ̃N ) +
(ρ+ φ)

N

∫ θ̃N

0

e−
(ρ+φ)

N
(θ̃N−y)Φπ(y)dy

≥
N

ρ+ φ

(

1− e−
(ρ+φ)

N
θ̃N
)

q(0)− Φπ(θ̃N )

= θ̃Nq0 −
(ρ+ φ)θ̃2N

N
− Φπ(θ̃N ) +O

(
1/N2

)
.

θ̃Nq0 > Φπ(θ̃N ) because θq0 single crosses Φπ(θ) at θ∗ ≥ θ̃N . Hence, there is Ñ such that, for all N ≥ Ñ ,

we have ΠN (θ̃N+) > Φπ(θ̃N ).

Lemma 9. Let

Π(θ) =







Φπ(θ) if θ ∈ [θ∗, 1]

q(0)θ if θ ∈ [0, θ∗)
.

Then, for any θ ∈ [0, 1]

lim
N→0

ΠN (θ) = Π(θ).

Proof. For all θ ≥ θ∗, ΠN (θ) = Π(θ), and, for any θ < θ∗, limN→∞ ΠN (θ) = θq(0) = Π(θ) by L’Hopital’s

rule.

B.2 Verification of Optimality

We start providing the necessary definitions from the theory of viscosity solutions, together with the

relevant results from the theory of optimal control in stratified domains in Barles et al. (2018). We make

some changes in notation to make it consistent with our setting, and to translate their minimization problem

into a maximization one. While Barles et al. (2018) considers the state space to be the complete real line,

the state space in our case is [0, 1]. However, we can extend the state space by letting the payoff on the

complement of [0, 1] to be sufficiently low. This can be achieved by adding a penalization term, and setting
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the flow payoff equal to φπ(1)− θ̇q(1)− k|θ− 1| for θ > 1, and φπ(0)− θ̇q(0)− k|θ| for θ < 0. By choosing k

large enough, we can ensure that the optimal solution never exits the interval [0, 1]. Due to the discontinuity

in the Hamiltonian at θ∗, a viscosity solution might fail to be unique. In order to fully characterize the value

function we need to specify its behavior at θ∗. This is done in Barles et al. (2018) by considering the concept

of Flux-limited sub- and supersolutions. Letting Ω0 = (−∞, θ∗) and Ω1 = (θ∗,∞), we consider the equation







(ρ+ φ)Π −H0(θ,Π) = 0 in Ω0

(ρ+ φ)Π −H1(θ,Π) = 0 in Ω1

(ρ+ φ)Π − φπ(θ∗) = 0 in {θ∗},

(38)

where

H0(θ,Π
′) = φπ(θ) + kmin{0, θ}+ max

|θ̇|≤N

{

θ̇
(
Π′ − q(0)

)}

H1(θ,Π
′) = φπ(θ) − kmax{0, θ− 1}+ max

|θ̇|≤N

{

θ̇
(
Π′ − q(θ)

)}

In Ω0 ∪ Ω1, the definitions are just classical viscosity sub- and supersolution, which we provide next for

completeness.

Definition 3 (Bardi and Capuzzo-Dolcetta (2008), Definition 1.1). A function u ∈ C(R) is a viscosity

subsolution of (33) if, for any ϕ ∈ C1(R),

(ρ+ φ)u(θ0)−H(θ0, ϕ
′(θ0) ≤ 0, (39)

at any local maximum point θ0 ∈ R of u− ϕ. Similarly, u ∈ C(R) is a viscosity supersolution of (33) if, for

any ϕ ∈ C1(R),

(ρ+ φ)u(θ1)−H(θ1, ϕ
′(θ1) ≥ 0, (40)

at any local minimum point θ1 ∈ R of u− ϕ. Finally, u is a viscosity solution of (33) if it is simultaneously

a viscosity sub- and supersolution.

Before providing the definition of sub- and supersolution on {θ∗}, we introduce the following space ℑ of

real valued test functions: ϕ ∈ ℑ if ϕ ∈ C(R) and there exist ϕ0 ∈ C1(Ω0) and ϕ1 ∈ C1(Ω1) such that ϕ = ϕ0

in Ω0, and ϕ = ϕ1 in Ω1. Next, we introduce two Hamiltonians that are needed to define a flux-limited sub-

and supersolution at {θ∗}.

H+
1 (θ∗,Π

′) ≡ φπ(θ) + sup
0<θ̇≤N

{

θ̇
(
Π′ − q(θ∗)

)}

H−
0 (θ∗,Π

′) ≡ φπ(θ) + sup
0>θ̇≥−N

{

θ̇
(
Π′ − q(0)

)}

.

Definition 4 (Barles et al. (2018), Definition 2.1). An upper semi-continuous, bounded function u : R → R

is a flux-limited subsolution on {θ∗} if for any test function ϕ ∈ ℑ such that u− ϕ has a local maximum at
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θ∗, we have

(ρ+ φ)u(θ∗)−max{φπ(θ∗), H
−
0 (θ∗, ϕ

′
0(θ∗)), H

+
1 (θ∗, ϕ

′
1(θ∗))} ≤ 0. (41)

A lower semi-continuous, bounded function v : R → R is a flux-limited supersolution on {θ∗} if for any test

function ϕ ∈ ℑ such that u− ϕ has a local minimum at θ∗, we have

(ρ+ φ)v(θ∗)−max{φπ(θ∗), H
−
0 (θ∗, ϕ

′
0(θ∗)), H

+
1 (θ∗, ϕ

′
1(θ∗))} ≥ 0. (42)

The Hamiltonians H−
0 and H+

1 are needed to express the optimality conditions at the discontinuity θ∗.

H+
1 consider controls that starting at θ∗ take θt towards the interior of [θ∗, 1], and H−

0 considers controls

that starting at θ∗ take θt towards the interior of [0, θ∗]. The use of the Hamiltonians H−
0 and H+

1 at {θ∗},

instead of H0 and H1, distinguishes flux-limited viscosity solutions from the traditional (discontinuous)

viscosity solutions.

We consider the following control problem, equivalent to the one defined in (31),

Π̃∗
N (θ0) = sup

|θt|≤N

∫ ∞

0

e−(ρ+φ)t
(

φπ̃(θt)− θtq̃(θt)1{θt 6=θ∗} − k
(
max{0, θt − 1} −min{0, θt}

))

dt

π̃(θ) = π(0)1{θ<0} + π(θ)1{θ∈[0,1]} + π(1)1{θ>1}

q̃(θ) = q(0)1{θ<0} + q(θ)1{θ∈[0,1]} + q(1)1{θ>1}.

The following Theorem characterizes the value function Π̃∗
N in terms of flux-limited viscosity solutions.

Theorem 1 (Barles et al. (2018), Theorem 2.9). The value function Π̃∗
N is the unique flux-limited viscosity

solution to equation (38).

We can now proceed to apply Theorem 1 to verify that ΠN defined in (35) is the value function of the

control problem (31).

Verification Lemmas 7 and 8 imply that ΠN is a classical solution on Ω \ {θ̃N , θ∗} so we only need

to verify the conditions for a viscosity solution on {θ̃N , θ∗}. ΠN defined in (35) is a classical solution on

(θ∗, 1). At θ = θ∗, ΠN has a convex kink so we only need to verify the supersolution property. That is,

that for any ϕ′(θ∗) in the subdifferential of ΠN (θ) at θ∗, which is [Π′
N (θ∗−),Π′

N (θ∗+)], inequality (42) is

satisfied. H+
1

(
θ∗, ϕ

′(θ∗)
)
is nondecreasing in ϕ′(θ∗) and H−

0

(
θ∗, ϕ

′(θ∗)
)
is nonincreasing in ϕ′(θ∗); thus, the

supersolution property follows from

(ρ+ φ)ΠN (θ∗)−H+
1

(
θ∗,Π

′
N (θ∗+)

)
= (ρ+ φ)ΠN (θ∗)− φπ(θ∗) = 0

(ρ+ φ)ΠN (θ∗)−H−
0

(
θ∗,Π

′
N (θ∗−)

)
= (ρ+ φ)ΠN (θ∗)− φπ(θ∗) = 0.

As Π′
N (θ̃N−) < q(0) < Π′

N (θ̃N+), ΠN (θ) has a convex kink at θ̃N , we only need to verify the property for

a supersolution. Thus, we need to verify that for any ϕ′(θ̃N ) ∈ [Π′
N (θ̃N−),Π′

N (θ̃N+)], inequality (40) is
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satisfied. This amounts to verify that

(ρ+ φ)ΠN (θ̃N )− φπ(θ̃N ) ≥ N max
{∣
∣Π′

N (θ̃N−)− q(0)
∣
∣,
∣
∣Π′

N (θ̃N+)− q(0)
∣
∣

}

By definition of θ̃N , we have

(ρ+ φ)ΠN (θ̃N )− φπ(θ̃N ) = N
(
Π′

N (θ̃N+)− q(0)
)
= N

(
q(0)−Π′

N (θ̃N−)
)
,

so it follows that

(ρ+ φ)ΠN (θ̃N )− φπ(θ̃N ) = N
∣
∣Π′

N (θ̃N−)− q(0)
∣
∣ = N

∣
∣Π′

N (θ̃N+)− q(0)
∣
∣.

Finally, at θ = 1, by choosing k large enough, we have that the solution of the HJB equation on {θ > 1}

entails θ̇(θ) = −N . Moreover, Π′(1−) = q(1) implies that the value function is differentiable at θ = 1 (in the

extended problem) and that θ̇(1) ≤ 0 is optimal. Thus, the state constraint is satisfied at θ = 1. A similar

argument applies at θ = 0. Thus, we can conclude that ΠN (θ) is a flux-limited viscosity solution, so, by

Theorem 1, it is the value function of the optimal control problem.

The uniqueness proof follows from the fact that the HJB has a unique solution in the smooth trading

region, under the given boundary conditions. In the region [0, θ∗), smooth trading and no trading are both

ruled out. This implies that trading must be atomistic. Under atomistic trading, the price must be at least

pLRo, but the bank will sell everything, even below this price. The solution θ∗ is easily verified as being

unique.

C Intermediation

We start by supplementing an assumption on the distribution of the monitoring cost κ.

Assumption 2. The distribution function f (κ̃) satisfies ∀κ ∈ [0, κ̄],

− Φ
[
p̂i (θ,D) f (κ) + f2 (κ)∆2D

]
< ∆f ′ (κ)D < f (κ) , pHRoθ, ∀θ ∈ [0, 1] , ∀κ ∈ [0, κ̄]

f ′

f2
<

Φ

1− Φ
∆.

Assumption 2 is satisfied by most commonly-used distribution functions such as the uniform distribution.

Proof of Lemma 1

Proof. Using integration by parts and a Transversality condition limt→∞ e−(ρ+φ)tDt = 0, we have

∫ ∞

0

e−(ρ+φ)sdDs =

∫ ∞

0

e−(ρ+φ)s(ρ+ φ)Dsds−D0.
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(20) can be rewritten as

max
(Dt,θt)t≥0

E

[∫ ∞

0

e−(ρ+φ)s [(φπ̂(θs, Ds)− y (θs, Ds)Ds + (ρ+ φ)Ds) ds+ dG (θs)]

]

−D0

The optimization in the lemma follows directly from the definition of φπ(θ)

Proof of Lemma 2 and 3

Proof. Let L = V (D, θ) + Φz (θ) [Πi(θ) −D], where Φz (θ) is the Lagrange multiplier of the debt issuance

constraint. From the first order condition, LD = 0, we can easily show that the optimal solution D∗(θ)

solves

φ
[
f(κi)∆

2
]
D∗(θ) = ρ− φz(θ), (43)

To finish the derivation of optimal debt choice D∗ (θ), we need one more assumption to guarantee that

the second order condition of the constrained maximization problem is satisfied. Assumption 2 imposes

lower and upper bounds on f ′ (κ), and will be satisfied in the uniform-distribution case. The upper bound

guarantees that, for any given θ, the second-order partial derivative of (23) will satisfy LDD < 0. The lower

bound guarantees that, in the region where the equity holders’ limited liability binds, the value function

Πi (θ) will be convex in θ.

Lemma 2 follows from the fact that z′ (θ) < 0, which is necessarily the case given Assumption 2 and

equation (43). Moreover, the constraint clearly binds at θ = 0 with D∗ (0) = Πi (0) = 0.

There are two cases to be considered; when the borrowing constraint is binding and when it is not.

When the borrowing constraint is binding, z (θ) = 0, so the conclusion follows directly. Thus, we only need

to verify the case in which the borrowing constrain, D ≤ Πi (θ) is binding.

Note that from the solution to D∗ (θ), it is immediately clear that z (θ) ≤ ρ
φ . In the constrained region,

Πi (θ) = V (Πi (θ) , θ). Using the Envelope Theorem to solve for Π′
i(θ), we get

Π′
i(θ) =

dV (Πi(θ), θ)

dθ

=
∂L

∂θ

∣
∣
∣
∣
D=Πi(θ)

=
Φ

1− Φz (θ)

[
p (θ)Ro + f (κi)∆

2RoΠi (θ)
]
.

Since the F.O.C. implies

f (κi)∆
2Πi (θ) =

ρ− φz (θ)

φ
,

we can show

Π′
i(θ) =

Φ

1− Φz (θ)

[

p (θ) +
ρ− φz (θ)

φ

]

Ro.
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Substituting this expression in equation (27), we get

θ̇ = φ
(1− Φ) (1− p (θ))Ro +Φz (θ) (Π′

i(θ)−Ro)

Φπ′′
i (θ)

= φ
(1− Φ) (1− p (θ)) + Φz (θ)

(

φ p(θ)−1
(ρ+φ)−φz(θ)

)

Φπ′′
i (θ)

Ro

= φ
(1− Φ)− Φz(θ)φ

(ρ+φ)−φz(θ)

Φπ′′
i (θ)

(1− p (θ))Ro.

Clearly, θ̇ > 0 if and only if

(1− Φ)−
Φz (θ)φ

(ρ+ φ) − φz (θ)
> 0 =⇒

ρ

φ
>

φ

(ρ+ φ)− φz (θ)
z (θ) ,

which always holds because of the upper bound on the Lagrange multiplier, z (θ) ≤ ρ
φ .

Proof of Proposition 3

Proof. The convexity of Π (θ) in the unconstrained region D∗ (θ) < Πi (θ) follows under Assumption 2. In

the constrained region where D∗ (θ) = Πi (θ), we differentiate Π′
i(θ) and get

Π′′
i (θ) =

Φ

1− Φz(θ)
[d′i(θ) + z′(θ) (Π′

i(θ)−Ro)] .

Substituting the first order condition for D in Π′
i(θ), we get that

Π′
i(θ)−Ro = −

Φ

1− Φz(θ)
(1− p(θ)) < 0.

Hence, it suffices to show that z′(θ) ≤ 0. Note that (43) implies

z′ (θ) = −

[

f ′∆2Πi(θ)
∂κi

∂θ
+ f∆2Π′

i(θ)

]

.

Note that Π′
i (θ) = Φπ′

i (θ), so that

Π′
i(θ) =

Φ

1− Φz (θ)

[
p (θ)Ro + f∆2RoΠi(θ)

]
.

Therefore, for z′ (θ) < 0, it suffices to have ∆f ′Πi(θ) +
Φ

1−Φz(θ)

[
p (θ) + f∆2Πi(θ)

]
> 0, which always holds

under the lower bound imposes by Assumption 2.

Next, at the boundary θD where the equity holder’s limited liability constraint binds, Π′
i (θ) is continuous,

which follows from (26), and the continuity of di (θ), D
∗ (θ), as well as the fact that limθ↑θD z (θ) = z (θD) =
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0. Therefore, we conclude that Πi (θ), the value function in the smooth-trading case is globally convex.

Finally, note that at θ = 0, Π′
i (θ) < pLRo. At θ = 1, Πi (1) > Πc (1), where Πc (1) > pLRo follows from

Assumption 1. The intersection between Πi (θ) and pLRoθ then admits the unique solution θ†. Moreover,

Πi (θ) < pLRoθ if and only if θ < θ†.

Proof of Proposition 4

Proof. Given any {θt}t≥0, the entrepreneur’s payoff is
∫∞

0
e−(ρ+φ)tφv(θt)dt, whereas the bank receives

∫∞

0
e−(ρ+φ)tφπ(θt)dt and investors receive

∫∞

0
e−φtφ(1− θt)d(θt)dt.

v (θ) = p (θ) (R−Ro) + (1− F (κc))B

π (θ) = p (θ)Roθ −

∫ κc

0

κdF (κ)

d (θ) = p (θ)Ro.

From here, we get that the planners problem is

W = max
(θt)t≥0

∫ ∞

0

φe−φt
[

(1− θt)d(θt) + e−ρt (vc(θ) + πc(θ))
]

dt

= max
(θt)t≥0

∫ ∞

0

φe−φt

{
(
1− e−ρt

)
[(1− θt)p (θt)Ro] + e−ρt

[

p(θt)R+ (1− F (κc))B −

∫ κc

0

κdF (κ)

]}

dt.

We can maximize the previous expression pointwise to get the first order condition

(1 − θt)f (κc)∆Ro

(
1− e−ρt

) ∂κc

∂θ
− p (θt)

(
1− e−ρt

)
Ro + e−ρtf (κc) (∆R −B − κc)

∂κc

∂θ
= 0

Substituting κc = ∆Roθ we get

(1− θt)f (κc)
(
1− e−ρt

)
(∆Ro)

2 − (pL + F (κc)∆)
(
1− e−ρt

)
Ro + e−ρtf (κc) (∆R −B + κc)∆Ro = 0

Under uniform distribution and pL = 0, this simplifies to

θt =
∆R− b− e−ρt(B − b)

(∆R− b) (2− e−ρt)
.

Differentiating we get

θ̇t =
ρeρt(2B − b−∆R)

(∆R − b) (2− eρt)
2 .

Therefore,

θ̇t < 0 ⇔
∆R −B

B − b
> 1.
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At time zero we have

θ0 =
∆R −B

∆R− b
,

and as t → ∞

lim
t→∞

θt =
∆R− b

2(∆R − b)
=

1

2
.

The expression for the welfare function is straightforward. The optimal retention satisfies the first order

condition

(
1− e−ρt

) [
(1 − θt)f (κc) (∆Ro)

2 − p (θt)Ro

]
+ e−ρtf (κc) (∆R −B − κc)∆Ro = 0.

Plugging in θt = 1, we can show that the FOC satisfies

(
1− e−ρt

)
[−p (1)Ro] + e−ρtf (κc) (b−B)∆Ro < 0.

The solution, as well as the verification that the second-order condition is satisfied.

D Analysis of Uniform Distribution

In this appendix, we provide the detailed calculations for the case of a uniform distribution with pL = 0.

Certification: Let

v (θ) = F (κc) pH (R −Ro) + (1− F (κc))B (44)

be the borrower’s expected payoff if the asset matures. The borrower’s expected payoff at t = 0 is

Vc (θ0) =

∫ ∞

0

e−(ρ+φ)tφv (θt) dt = ΦB +
φ (b −B)

κ̄

∆Roθ0
2ρ+ φ

, (45)

where we have substituted Ro = R− b
∆ and therefore pH (R−Ro) = b. So, the borrower’s problem at time

0 is

Wc = max
{θ0,Ro}

Vc (θ0) + Lc (θ0) (46)

s.t. Lc (θ0) ≥ I −A. (47)

It can be easily verified that, Lc (θ0) is maximized at θ0 = 1. However, Vc (θ0) + Lc (θ0) is maximized at

θ0 = 1−
ρ+ φ

2ρ+ φ

B − b

∆Ro
. (48)
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Intermedation: If the borrowing constraint D ≤ Π is slack, Πi(θ) solves

∆2

2κ̄

[
(Roθ)

2 −D2
]
= D.

The previous equation has two roots, and the positive root is

Πi(θ) = −
κ̄

∆2
+

√
( κ̄

∆2

)2

+ (Roθ)
2
.

1. If Φ ≥ Φ :=
√

(κ̄/∆2)2

(κ̄/∆2)2+(Ro)
2 , the bank’s debt choice satisfies D∗ (1) = D̃ (1) = ρκ̄

φ∆2 .

2. Otherwise, the bank’s debt choice satisfies D∗ (1) = Πi (1) = − κ̄
∆2 +

√
(

κ̄
∆2

)2
+ (Ro)

2
.

The borrowing capacity is Li (1) = Πi (1) = Φπi (1) and the optimal debt when θ = 1 is

D∗(1) = min

{

ρκ̄

φ∆2
,−

κ̄

∆2
+

√
( κ̄

∆2

)2

+ (Ro)
2

}

.

The debt-issuance constraint is slack if

D̃ (1) =
ρκ̄2

φ∆2
≤ Πi (1) = −

κ̄

∆2
+

√
( κ̄

∆2

)2

+R2
o.

Simple derivation shows this is satisfied if and only if

Φ >

√

(κ̄/∆2)
2

R2
o + (κ̄/∆2)2

,

which holds if and only if ρ is sufficiently low.

Whenever the borrowing constraint is slack (that is D̃ (1) < Πi (1)), we can plug in D∗(1) to get

πi (1) =
∆2

2κ̄

(

Ro −
ρκ̄
φ∆2

)2

+
ρ+φ∆2

κ̄

(

Ro−
ρκ̄

φ∆2

)

φ
ρκ̄
φ∆2 .

According to (4), κi = ∆
(

Ro −
ρκ̄
φ∆2

)

and pi (1) =
κi

κ̄ ∆ = ∆2

κ̄

(

Ro −
ρκ̄
φ∆2

)

. Consequently, π̂i (1, D
∗) and

πi (1) defined in (17) and (21) become

π̂i (1, D
∗) =

∆2

2κ̄

(

Ro −
ρκ̄

φ∆2

)2

(49)

πi (1) =
∆2

2κ̄

(

Ro −
ρκ̄

φ∆2

)2

+
ρ+ φ∆2

κ̄

(

Ro −
ρκ̄
φ∆2

)

φ

ρκ̄

φ∆2
. (50)
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As in the certification case, we can define the entrepreneur and bank’s payoff as

v (1) = F (κi) pH (R−Ro) + (1− F (κi))B = B +
∆
(

Ro −
ρκ̄
φ∆2

)

κ̄
(b−B) (51)

Vi (1) =

∫ ∞

0

e−(ρ+φ)tφv (θt) dt = Φv (1) (52)

Li (1) = Πi (1) = Φπi (1) . (53)

Thus, the borrower’s payoff at time 0 is

Wi = Vi (1) + Li (1) . (54)

Proof of Proposition 5

Proof. Note that Lc (θ0) = Πc (θ0)+ (1− θ0) qc (θ0). In the proposition, Lc (θ
∗
0) > I −A guarantees that the

borrowing constraints are slack in both certification and intermediation. Under certification

Wc = ΦB +
φ (b−B)

κ̄

∆Ro

2ρ+ φ
θ0 +

Φ

κ̄
(∆Ro)

2 θ0

(

1−
θ0
2

)

,

where θ0 is evaluated at

θ∗0 = 1−
ρ+ φ

2ρ+ φ

B − b

∆Ro
= 1−

1

2− Φ

B − b

∆Ro
,

Under intermediation,

Wi = Φ



B +
∆
(

Ro −
ρκ̄
φ∆2

)

κ̄
(b−B)



+
Φ

2κ̄
∆2

(

Ro −
ρκ̄

φ∆2

)2

+
ρ+ φ∆2

κ̄

(

Ro −
ρκ̄
φ∆2

)

ρ+ φ

ρκ̄

φ∆2
.

Certification dominates intermediation if Wc > Wi, letting ∆W ≡ Wc −Wi,

∆W =Φ

[
1

2− Φ

(b−B)

κ̄

(

∆Ro −
1

2− Φ
(B − b)

)

+
1

2κ̄

(

∆Ro −
1

2− Φ
(B − b)

)(

∆Ro +
1

2− Φ
(B − b)

)

−
(b−B)

κ̄

(

∆Ro −
ρκ̄

φ∆

)

−
1

2κ̄

(

∆Ro −
ρκ̄

φ∆

)2

−

(
1− Φ

Φ
+

∆

κ̄

(

∆Ro −
ρκ̄

φ∆

))
ρκ̄

φ∆2

]

=
Φ

2κ̄

[(
B − b

2− Φ

)2

+ 2

(
1− Φ

2− Φ
∆Ro −

ρκ

φ∆

)

(B − b)−

(
ρκ̄

φ∆

)2
]
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The previous equation is negative for B on (
¯
B, B̄), where

¯
B = b− (2− Φ)2





√
(
1− Φ

2− Φ
∆Ro +

ρκ

φ∆

)2

+

(
ρκ̄

φ∆(2 − Φ)

)2

−

(
1− Φ

2− Φ
∆Ro −

ρκ

φ∆

)




B̄ = b+ (2− Φ)2





√
(
1− Φ

2− Φ
∆Ro −

ρκ

φ∆

)2

+

(
ρκ̄

φ∆(2 − Φ)

)2

−

(
1− Φ

2− Φ
∆Ro −

ρκ

φ∆

)




Because,
¯
B < b, we only need to consider the upper bound, so, after substituting Ro, we get that the

expression is negative as long as B satisfies

b < B < b+ (2− Φ)2





√
(
1− Φ

2− Φ

(
∆R− b

)
−

ρκ

φ∆

)2

+

(
ρκ̄

φ∆(2 − Φ)

)2

−

(
1− Φ

2− Φ

(
∆R− b

)
−

ρκ

φ∆

)


 .

Thus, we can conclude that certification dominates if

B > b+ (2− Φ)2





√
(
1− Φ

2− Φ

(
∆R− b

)
−

ρκ

φ∆

)2

+

(
ρκ̄

φ∆(2 − Φ)

)2

−

(
1− Φ

2− Φ

(
∆R− b

)
−

ρκ

φ∆

)


 .

We need to compare now Wc and Wd.

Wc −Wd = B +
φ (b−B)

κ̄

∆Ro

2ρ+ φ
θ0 +

Φ

κ̄
(∆Ro)

2 θ0

(

1−
θ0
2

)

− pHR

Proof of Corollary 1

Proof. For any θ0, it is easily verified that

∂Wℓ

∂tℓ
= 0 =⇒

∂2Wℓ

∂t2ℓ
> 0,

which means that Wℓ(tℓ) is quasi-convex, so it is maximized on {0,∞}. Moreover, it is easily verified that

lim
tℓ→∞

Wℓ(tℓ)−Wℓ(0) = (1− θ∗0) (1− Φ)
(∆Ro)

2
θ∗0

κ̄
− Φ

ρ

2ρ+ φ

∆Roθ
∗
0

κ̄
(B − b) > 0,

so argmax{tℓ≥0} Wℓ(tℓ) = ∞.

Details for Minimum Retention

Next, we construct the equilibrium in the case of certification with minimum retention. First, let’s

consider the price of the loan once the bank hits the minimum retention level
¯
θ. Because θ =

¯
θ is an
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absorbing state, the price of the loan satisfies qc (
¯
θ) = dc (

¯
θ) = π′

c(¯
θ). For any θ >

¯
θ with smooth trading,

the HJB is (9) the loan price satisfies equation (12) are unchanged. Therefore, in any region with smooth-

trading, the bank’s value function, the equilibrium trading strategy, and the price of loans is unchanged. It

remains to check if at some θ, the bank has incentives to trade atomistically to θ+ =
¯
θ. The payoff of jumping

from θ to
¯
θ is Φπc (

¯
θ) + qc (

¯
θ) (θ −

¯
θ) while the payoff in the smooth trading region is Πc (θ) = Φπc (θ). If

Φπc (
¯
θ) + qc (

¯
θ) (1−

¯
θ) > Φπc (1), the certifying bank always sells immediately to θ+ =

¯
θ. Otherwise, as in

the proof of the case without minimum requirements, there is a unique θ̃ satisfying

Φπc(θ̃) = Φπc(
¯
θ) + q(

¯
θ)(θ̃ −

¯
θ) = Φπc(

¯
θ) + π′

c(¯
θ)(θ̃ −

¯
θ). (55)

By no-arbitrage, the price function must be upper semi-continuous (that is q(θ̃) = q(θ̃+)), which means

that q(θ̃) = Φπ′
c(θ̃).

25 At the same time, no-arbitrage also requires to be equal to the expected dividend

E

[

dc(θτφ)|θt = θ̃
]

. If the bank stops trading at θ̃, and remains there for an exponential time with mean

arrival rate λ, at which time sells θ̃ −
¯
θ, the expected dividend is

E

[

dc(θτφ)|θt = θ̃
]

=
λ

φ+ λ
dc(

¯
θ) +

φ

φ+ λ
dc(θ̃).

Combining the previous conditions, we get that λ is implicitly given bu

Φπ′
c(θ̃) =

λ

φ+ λ
π′
c(¯
θ) +

φ

φ+ λ
π′
c(θ̃) (56)

The next proposition, summarize the previous discussion and describe the equilibrium in the certification

case with minimum retention requirements.

Proposition 7 ( Equilibrium with Minimum Retention). There is a unique Certification Equilibrium

with Minimum Retention . Given the bank’s initial retention θ0, the bank sells its loans smoothly at a

rate given by equation (13) until T̃ = min{t > 0 : θt = θ̃}, were θ̃ is the unique solution to equation (55).

After time T̃ , the bank holds θt = θ̃ until an exponentially distributed random time τλ, at which time it sells

off θ̃ −
¯
θ. The exponential time τλ has a mean arrival rate λ1{θt=θ̃}, where λ satisfies (56). After time τλ,

the bank holds
¯
θ until the projects maturity. The equilibrium loan price is

qc(θt) =







Φ
(

pL + F (∆Roθt)∆
)

Ro t < τλ
(

pL + φ
λ+φF

(

∆Roθ̃
)

∆
)

Ro T∗ ≤ t < τλ

pL + F (∆Ro
¯
θ)∆

)

Ro t ≥ τλ

(57)

We omit a formal proof of this proposition as it follows the steps of the proof of Proposition 2.

25Otherwise, there would be a deterministic downward jump in the price at the time θt reaches θ̃ which would be
inconsistent with no-arbitrage.
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Proof of Proposition 6

Proof. We can similarly define V , the bank’s objective function without trading gains as

V(D, θ) := Φ

[

p̂i (θ,D) θRo −

∫ κi

0

κdF (κ)

]

+ (1− Φ)D +Φ(1− p̂i (θ,D)) (1− ξ)D,

where the new term Φ (1− p̂i (θ,D)) (1− ξ)D stands for the benefit of the government subsidy.

If θ is sufficiently large such that the debt issuance constraint is slack, simple derivation shows that the

optimal debt issuance satisfies

D̃ (θ) =
(1− Φ)− Φ (1− p(θ)) (1− ξ)

Φ [1− (1− p(θ)) (1− ξ)] f (κi)∆2
.

Recall that in Lemma 3, the constraint is slack whenever θ is sufficiently high.

In the region that the debt-issuance constraint is slack, the HJB equation implies

θ̇ = φ
Roξ

(1−Φ)−Φ(1−p(θ))(1−ξ)
1−(1−p(θ))(1−ξ) − (1− Φ) p(θ)Ro

Φπ′′
i (θ)

.

Clearly, when ξ = 1, we get the results in subsection 4.2 that θ̇ = φRo(1−Φ)(1−p(θ))
Φπ′′

i (θ) > 0. Moreover, when

ξ = 0 so that the entire interest rate is subsidized by the government, θ̇ = φ−(1−Φ)p(θ)Ro

Φπ′′
i (θ) < 0, implying the

bank sells loans over time. In general, there exists a ξ† and θ̇ < 0 if ξ < ξ†.
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